Psychology, asked by Krishna9990, 1 year ago

fundamental theorem of proportionality

Answers

Answered by Shatakshi3
1
Triangle Proportionality Theorem. If a line parallel to one side of a triangle intersects the other two sides of the triangle, then the line divides these two sides proportionally.
Answered by nilesh102
4

hi mate,

PROOF OF BPT

Given: In ΔABC, DE is parallel to BC

Line DE intersects sides AB and AC in points D and E respectively.

To Prove:

AD AE

----- = -----

DB AC

Construction: Draw EF ⟂ AD and DG⟂ AE and join the segments BE and CD.

Proof:

Area of Triangle= ½ × base × height

In ΔADE and ΔBDE,

Ar(ADE) ½ ×AD×EF AD

----------- = ------------------ = ------ .....(1)

Ar(DBE) ½ ×DB×EF DB

In ΔADE and ΔCDE,

Ar(ADE) ½×AE×DG AE

------------ = --------------- = ------ ........(2)

Ar(ECD) ½×EC×DG EC

Note that ΔDBE and ΔECD have a common base DE and lie between the same parallels DE and BC. Also, we know that triangles having the same base and lying between the same parallels are equal in area.

So, we can say that

Ar(ΔDBE)=Ar(ΔECD)

Therefore,

A(ΔADE) A(ΔADE)

------------- = ---------------

A(ΔBDE) A(ΔCDE)

Therefore,

AD AE

----- = -----

DB AC

Hence Proved.

Attachments:
Similar questions