Physics, asked by Sweety8525, 7 months ago

Fvector = x²i+2yj , and body is displaced from (1,2) to (3,4) . Find the work done.

Answers

Answered by Anonymous
5

Given:

Force  \rm (\overrightarrow{F}) =  \rm x^2\hat{i} + 2y\hat{j}

Initial position  \rm (r_i) = (1,2)

Final position  \rm (r_f) = (3,4)

To Find:

Work Done (W)

Answer:

For a varying force the work done can be expressed as a definite integral of force over displacement.

 \bf \leadsto W = \displaystyle \rm \int\limits_{r_i}^{r_f}  \overrightarrow{F}. \overrightarrow{dr}\\  \\  \rm \leadsto W = \displaystyle \rm \int\limits_{(1,2)}^{(3,4)} ( x^2\hat{i} + 2y\hat{j}). (dx \hat{i} + dy \hat{j}) \\  \\ \rm \leadsto W = \displaystyle \rm \int\limits_{1}^{3}  x^2 .dx + \displaystyle \rm \int\limits_{2}^{4} 2y.dy \\  \\ \rm \leadsto W = \dfrac{ {x}^{3} }{3} \Bigg|_{1}^{3}  +  {y}^{2} \bigg|_{2}^{4}  \\  \\  \rm \leadsto W = \dfrac{ ({3}^{3}  -  {1}^{3}) }{3}   +  ( {4}^{2}  -  {2}^{2} ) \\  \\   \rm \leadsto W = \dfrac{ (27 -  1) }{3}   +  ( 16  -  4 ) \\  \\  \rm \leadsto W = \dfrac{ 26}{3}   +  12 \\  \\ \rm \leadsto W = \dfrac{ 26 + 36}{3}   \\  \\ \rm \leadsto W = \dfrac{ 62}{3}    \: J \\  \\  \rm \leadsto W = 20.67    \: J

 \therefore Work Done (W) = 20.67 J

Answered by Anonymous
4

W = ( x²i + 2yj ) × ( dxi + dyj )

= ( x² × dx ) + ( 2y × dy )

= x / 3 ( 3 , 1 ) + y² ( 4 , 2 )

= [ ( 3 × 3 × 3 - 1 × 1 × 1 ) / 3 ] + [ 4 × 4 - 2 × 2 ]

= ( 27 - 1 ) / 3 + ( 16 - 4 )

= ( 26 / 3 ) + 12

LCM = 3

= 26 + 36 / 3

= 62 / 3

= 20.6

Similar questions