Math, asked by krishna228194, 4 months ago

G is the centroid of AABC and a, b, c are the
lengths of the sides BC, CA and AB
respectively. Prove that
a’+ b2 + 2 = 30A +OB +OC
b c 3(’ +OB+ocº) - 9(OG)
where O is any point.​

Answers

Answered by HearthackerAshu15
5

\huge{\mathcal {\purple {A}\green {n}\pink {s}\blue {w}\purple{e}\green {r}}}

☆☆☆☆☆Covaxin is an inactivated vaccine which means that it is made up of killed coronaviruses, making it safe to be injected into the body. Bharat Biotech used a sample of the coronavirus, isolated by India's National Institute of Virology.

\huge\colorbox{orange}{çhű࿐ ❤}

Answered by brainly1900
1

Answer:

Let A (x1, y1), B(x2, y2) and C(x3, y3), be the vertices of ∆ABC.

Without the loss of Generality, assume the centroid of the ΔABC to be at the origin, i.e. G = (0, 0).

⇒ x1 + x2 + x3 = 0 and y1 + y2 + y3 = 0

Squaring on both sides, we get

x12 + x22 + x32 + 2x1x2 + 2x2x3 + 2x3x1 = 0 and y12 + y22 + y32 + 2y1y2 + 2y2y3 + 2y3y1 = 0  … (1)

AB2 + BC2 + CA2

= [(x2 – x1)2 + (y2 – y1)2] + [(x3 – x2)2 + (y3 – y2)2] + [(x1 – x3)2 + (y1 – y3)2]

= [(x12 + x22 – 2x1x2 + y12 + y22 – 2y1y2) + (x22 + x32 – 2x2x3 + y22 + y32 – 2y2y3) + (x12 + x32 – 2x1x3 + y12 + y32 – 2y1y3)

= (2x12 + 2x22 + 2x32 – 2x1x2 – 2x2x3 – 2x1x3) + (2y12 + 2y22 + 2y32 – 2y1y2 – 2y2y3 – 2y1y3)

= (3x12 + 3x22 + 3x32) + (3y12 + 3y22 + 3y32)    (From (1))

= 3(x12 + x22 + x32) + 3(y12 + y22 + y32)    … (2)

3(GA2 + GB2 + GC2)

= 3 [(x1 – 0)2 + (y1 – 0)2 + (x2 – 0)2 + (y2 – 0)2 + (x3 – 0)2 + (y3 – 0)2]

= 3 (x12 + y12 + x22 + y22 + x32 + y32)

= 3 (x12 + x22 + x32) + 3(y12 + y22 + y32)    … (3)

From (2) and (3), we get

AB2 + BC2 + CA2 = 3(GA2 + GB2 + GC2

Similar questions