Math, asked by sabbirmondal, 1 year ago

g(x) =1-x/1+x then find g(1/x)+g(x)=?​

Answers

Answered by IamIronMan0
2

Step-by-step explanation:

g( \frac{1}{x }) =  1 -  \frac{ \frac{1}{x} }{1 +  \frac{1}{x} }  = 1 -   \frac{1}{x + 1}

g(x) + g( \frac{1}{x} ) = 2 -  \frac{x + 1}{x + 1}  = 1

Answered by Anonymous
3

 \huge { \:Question} \\  \\ if \: g(x) =  \frac{(1 - x)}{(1 + x)}  \: then \: find \: g( \frac{1}{x} ) + g(x) \\  \\  \huge  \red{ \: solution} \\  \\ firstly \: find \:  \: g  \bigg(\frac{ 1}{x}  \bigg ) \\  \\ put \: x \:  =  \frac{1}{x} in \: \:  \:  \:  \:  \:   \frac{(1 - x)}{(1 + x)}  \\  \\   \implies \:  \frac{1 -  \frac{1}{x} }{1 +  \frac{1}{x} }  \\  \\  \implies \:  \frac{x - 1}{x + 1}  \\  \:  \therefore \: g \bigg( \frac{1}{x}  \bigg) + g(x) =  \frac{x - 1}{x + 1}  +  \frac{1 - x}{1 + x}  \\  \\  \implies \:  \frac{x - 1 + 1 - x}{x + 1}  \\  \\  \implies \:  \frac{0}{x + 1}  = 0

Similar questions