Math, asked by User8ba24, 1 year ago

गुणोत्तर श्रेणी 1+2/3+4/9+........के प्रथम n पदों का योग तथा प्रथम 5 पदों का योगफल ज्ञात कीजिए ?

Regards : Brainly Leader

Answers

Answered by SAngela
40
Hay sir,

Given that ☞

1 +  \frac{2}{3}  +  \frac{4}{9}  + ...


Here, a =1 . r = 2/3.

गुणोत्तर श्रेणी के n पदों का योगफल,

s _{n}  =  \frac{a(1 - r {}^{n} )}{1 - r}



 =  \frac{1(1 - ( \frac{2}{3} ) {}^{n}) }{1 -  \frac{2}{3} }  = 3(1 - ( \frac{2}{3} ) {}^{n} )


और गुणोत्तर श्रेणी के प्रथम 5 पदों का योगफल


s _{5} = 3(1 - ( \frac{2}{3} ) {}^{5} )


 = 3(1 -  \frac{32}{243} )


 = 3 \times  \frac{211}{243}  =  \frac{211}{81}




I hope it's help you

Regards : Sangela

akhlaka: Osm answer sissy.... :)
SAngela: tysm☺
akhlaka: wlcm
vikramb18: osm answer ma'am :-)
Answered by Shubhendu8898
30
Given,
Series is :- 1+2/3+4/9+........

First term(a) = 1
common Ratio (r)= 2/3

We know that sum of n terms of GP is
Sn = a{1 - r^n}/(1-r)

putting a = 1 and. r= 2/3

Sn = 1*{1- (2/3)^n }/(1- 2/3}

Sn= 3*{1 - 2/3}^n}(3-2)

Sn = 3*{1 - 2/3}^n}.....................(i)
Now,
putting n=5 in equation (i), We get,
Sum of First 5 terms of GP = 3*{1 - (2/3)^5}

= 3{3^5 - 2^5}/3^5

= 1/3⁴{ 243 - 32}

=1/3⁴ {211}

= 211/3⁴

Note:-
(i) Sum of n term's of GP is = a{1 - r^n}/(1-r)
The following formula is used when r<1

(ii) Sum of n terms of GP is = a{r^n -1 }/(r- 1)
The following formula is used when r>1
Attachments:

akhlaka: Nice answer bro....
Shubhendu8898: thanks:-)
akhlaka: wlcm
Onlymath: good
cuteGmail: can you please help me shubhendhu
Shubhendu8898: ok sure
Similar questions