Math, asked by sharmanitigya5, 1 month ago

Ganesh sells two chairs for Rs. 800 each, gains 20% on one and lose 20% on the other. Find his gain or lose percentage in the entire transaction?

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

  • Ganesh sells two chairs for Rs. 800 each, gains 20% on one chair and lose 20% on the other chair.

Consider Case - 1

Given that

  • Selling Price of chair = Rs 800

  • Gain % = 20 %

Let assume that

  • Cost Price of chair be Rs x

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: CP =  \frac{100 \times SP}{100 + gain \: \% \: } }}

So, on substituting the values, we get

\rm :\longmapsto\:x = \dfrac{100 \times 800}{100 + 20}

\rm :\longmapsto\:x = \dfrac{80000}{120}

\rm \implies\:\boxed{ \tt{ \: x \:  =  \: 666.67 \: }}

Consider Case - 2

Given that

  • Selling Price of chair = Rs 800

  • Loss % = 20 %

Let assume that

  • Cost Price of chair be Rs y

We know that

\rm :\longmapsto\:\boxed{ \tt{ \: CP =  \frac{100 \times SP}{100 - loss \: \% \: } }}

So, on substituting the values, we get

\rm :\longmapsto\:y = \dfrac{100 \times 800}{100 - 20}

\rm :\longmapsto\:y = \dfrac{80000}{80}

\rm \implies\:\boxed{ \tt{ \: y \:  =  \: 1000 \: }}

So, in the whole transaction, we have

Selling price of 2 chairs = 800 + 800 = Rs 1600

Cost Price of 2 chairs = 666.67 + 1000 = Rs 1666.67

\rm \implies\:CP > SP

\rm \implies\:Loss \: in \: the \: transaction

and we know

\red{\rm :\longmapsto\:\boxed{ \tt{ \: Loss\% =  \frac{CP - SP}{CP} \times 100\% \: }}}

\rm :\longmapsto\:Loss\% = \dfrac{1666.67 - 1600}{1666.67} \times 100\%

\rm :\longmapsto\:Loss\% = \dfrac{66.67}{1666.67} \times 100\%

\rm :\longmapsto\:\boxed{ \tt{ \: Loss\% = 4.0002 \:  \approx \: 4\% \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{100+Gain\% \: (or) (100 - Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by nirmalbhati250
0

Answer:

1028 &-#)$!_-2('(2?djfhwkcuemd

Similar questions