Math, asked by somdattabhattacharyy, 3 months ago

Ganit Prakash - Class X
Chapter : 23
5.
If cote theta=2, then let us determine the values of tan theta and sec theta and show that 1+tan^2 theta=sec^2 theta​

Answers

Answered by muskanperween225
2

Step-by-step explanation:

Given, cot theta = 2.

=> cot theta = base / perpendicular = 2

=> tan theta = perpendicular / base = 1/2

( {hypotenuse)}^{2}  = ( {perpendicular)}^{2}  + ( {base)}^{2}

( {h)  }^{2}  = ( {p)}^{2}  + ( {b)}^{2}

 = ( {1)}^{2}  + ( {2)}^{2}

 = 1 + 4

 = 5

hypotenuse =  \sqrt{5}

sec \: theta \:  =  \frac{hypotenuse}{base}  =  \frac{ \sqrt{5} }{2}

therefore, L.H.S.,

1 +  {tan}^{2} theta = 1 + ( { \frac{1}{2} )}^{2}

 = 1 +  \frac{1}{4}

 =  \frac{4 + 1}{4}

 =  \frac{5}{4}

R. H. S,

 {sec}^{2} theta = ( { \frac{ \sqrt{5} }{2} )}^{2}

 =  \frac{5}{4}

therefore, L. H. S = R. H. S (proved)

Similar questions