Gauss theorem in electrostatics given are two spherical concentric spheres of radii r1 and r2 are one less than our to carry coal charge q is find the net electric field at a point situated at the distance are away from the centre where are greater than and greater than or greater than our to an hour less than aarti
Answers
Answered by
0
The Gauss Theorem
The net flux through a closed surface is directly proportional to the net charge in the volume enclosed by the closed surface.
Φ = →E.d→A = qnet/ε0
In simple words, the Gauss law relates the ‘flow’ of electric field lines (flux) to the charges within the enclosed surface. If there are no charges enclosed by a surface, then the net electric flux remains zero. This means that the number of electric field lines entering the surface is equal to the field lines leaving the surface.
This statement also gives an important corollary: the electric flux from any closed surface is only due to the sources (positive charges) and sinks (negative charges) of electric fields enclosed by the surface. Any charges outside the surface do not contribute to the electric flux. Also, only electric charges can act as sources or sinks of electric fields. Changing magnetic fields. For example, cannot act as sources or sinks of electric fields.
The net flux through a closed surface is directly proportional to the net charge in the volume enclosed by the closed surface.
Φ = →E.d→A = qnet/ε0
In simple words, the Gauss law relates the ‘flow’ of electric field lines (flux) to the charges within the enclosed surface. If there are no charges enclosed by a surface, then the net electric flux remains zero. This means that the number of electric field lines entering the surface is equal to the field lines leaving the surface.
This statement also gives an important corollary: the electric flux from any closed surface is only due to the sources (positive charges) and sinks (negative charges) of electric fields enclosed by the surface. Any charges outside the surface do not contribute to the electric flux. Also, only electric charges can act as sources or sinks of electric fields. Changing magnetic fields. For example, cannot act as sources or sinks of electric fields.
Similar questions