Physics, asked by ns3094670, 10 months ago

gaussian surface of uniformly charged infinite plane sheet ​

Answers

Answered by ItSdHrUvSiNgH
2

Explanation:

Explanation:

\huge\bf{\mid{\overline{\underline{ANSWER}\mid}}} \\ \\

Electric  \:  \: field \:  \:  due \:  \:  to  \:  \: uniformly  \:  \: \\  charged \:  \:  infinite \:  \:  plane \:  \:  sheet.  \\ Suppose \:  \:  a \:  \:  thin \:  \:  non-conducting \:  \:  \\  infinite \:  \:  sheet \:  \:  of \:  \:  uniform \:  \:  \\  surface, \:  \:  charge  \:  \: density  \:  \: \sigma

Electric \:  \:  field \:  \:  intensity  \:  \: on  \:  \: either \:  \:   \\ side \:  \:  of  \:  \: the  \:  \: sheet  \: must \:  \:  be \:  \:  perpendicular \\  to \:  \:  the \:  \:  plane  \:  \: of \:  \:  sheet \:  \:  having \:  \:  \\  same  \:  \: magnitude \:  \:  of \:  \:  all  \:  \: points  \:  \: \\  equidistant \:  \:  from \:  \:  the \:  \:  sheet.  \:  \:  \\ Let  \:  \: P  \:  \: be  \:  \: any  \:  \: point \:  \:  at \:  \:  distance  \:  \:  'r'  \\  from \:  \:  the  \:  \: sheet. \:  \:    Let \:  \:  the \:  \:  small \:  \:  \\  area \:  \:  element \:  \: be \:  \:  \vec{E} = ds \widehat{n} .

Where  \:  \: \vec{E} \:  \:  and  \:  \:  \widehat{n} \:  \:  are  perpendicular,  \\ on \:  \:  the \:  \:  surface  \:  \: of  \:  \: imagined \:  \:  cylinder,  \\ so \:  \:  electric \:  \:  flux  \:  \: is \:  \:  zero. \\  Also, \:  \:  \vec{E}  \:  \: and \:  \:  \widehat{n}  \:  \: are \:  \:  parallel \:  \:  \\  on \:  \:  the  \:  \: two  \:  \: cylindrical \:  \:  edges \:  \:    P  \:  \: and  \:  \: Q, \:  \\  Which  \:  \: contributes \:  \:  Electric \:  \:  flux.

\therefore \:  Electric \:  \:  flux \:  \:  over \:  \:  the \:  \:  edges  \\ P  \:  \: and  \:  \: Q  \:  \: of \:  \:  the \:  \:  cylinder  \:  \: is : \\  \\ 2 \phi =  \frac{q}{ \epsilon_{0}}  \implies 2 \oint \vec{E} \vec{ds \:  \:  \: } =  \frac{q}{ \epsilon_{0}}

2 \oint  \vec{E}. \vec{ds} =  \frac{q}{ \epsilon_{0}}  \\  \\   (\vec{E} \perp \vec{ds}) \\  \\ 2 \vec{E}\pi {r}^{2}  = \frac{q}{ \epsilon_{0}}  \\  \\ \boxed{ \vec{E} = \frac{q}{2\pi {r}^{2}  \epsilon_{0}} } \\  \\

The \:  \:  charge \:  \:  density \:  \:  \sigma =  \frac{q}{S}  \\  \\ where \:  \: S \:  \:  =  \:  \: area \:  \: of \:  \: circle \\  \\  {E} =  \frac{\pi {r}^{2}  \sigma}{2\pi \epsilon_{0} {r}^{2} }  =  \frac{ \sigma}{2 \epsilon_{0}}  \\  \\  \vec{E} =  \frac{ \sigma}{2 \epsilon_{0}}   \widehat{n} \\  \\ where \:  \: \widehat{n}  \:  \: is \:  \: unit \:  \: vector \:  \: normal \:  \:  \\ to \:  \: plane \:  \: and \:  \: going \:  \: away \:  \: from \: \:  it \\  \\

When  \:  \: \sigma > 0 , \:  \:  \vec{E} \:  \:  is \:  \:  directed \:  \:   \\ away \:  \:  from \:  \:  both  \:  \: the \:  \:  sides,  \\ Hence \:  \:  electric  \:  \: field  \:  \: intensity \:  \:  \\  is \:  \:  independent \:  \:  of \:  \:  r . \\ Note :- For \:  \:  conducting \:  \:  sheet,  \:  \:  \\ the  \:  \: surface \:  \:  charge \:  \:  density \:  \:  on \:  \:   \\ both \:  \:  the \:  \:  surface \:  \:  willm \:  be  \:  \: same \:  \:  \\  \\ \huge\boxed{  \therefore \vec{E} = \frac{\sigma}{\epsilon_{0}} }

Attachments:
Similar questions