Math, asked by anvitha57, 3 months ago

general solution of (4y+x^3)dx+xdy=0

Answers

Answered by lovernavi
2

x

dx

dy

+4y=x

3

e

x

Dividing both sides by xx ,

\dfrac{dy}{dx}+\dfrac4xy=x^2e^x

dx

dy

+

x

4

y=x

2

e

x

...(i)

On comparing this with \dfrac{dy}{dx}+Py=Q

dx

dy

+Py=Q , we get

P=\dfrac4x,\ Q=x^2e^xP=

x

4

, Q=x

2

e

x

Now, integrating factor, I.F.=e^{\int Pdx}I.F.=e

∫Pdx

I.F.=e^{\int \frac4xdx}=e^{4\ln x}=e^{\ln x^4}=x^4I.F.=e

x

4

dx

=e

4lnx

=e

lnx

4

=x

4

On multiplying (i) by this I.F., we get,

I.F.\times y=\int Q\times I.F. \ dxI.F.×y=∫Q×I.F. dx

\Rightarrow x^4\times y=\int x^2e^x\times x^4\ dx⇒x

4

×y=∫x

2

e

x

×x

4

dx

\Rightarrow yx^4=\int x^6e^x\ dx⇒yx

4

=∫x

6

e

x

dx

Now we apply integration by parts on right side, taking x^6x

6

as first function and e^xe

x

as second. Also we need to perform this rule various times further.

\Rightarrow yx^4=x^6e^x-\int 6x^5e^x\ dx \\ \Rightarrow yx^4=x^6e^x-6[x^5e^x-\int 5x^4e^x]\ dx \\ \Rightarrow yx^4=x^6e^x-6x^5e^x+30[x^4e^x-\int 4x^3e^x]\ dx⇒yx

4

=x

6

e

x

−∫6x

5

e

x

dx

⇒yx

4

=x

6

e

x

−6[x

5

e

x

−∫5x

4

e

x

] dx

⇒yx

4

=x

6

e

x

−6x

5

e

x

+30[x

4

e

x

−∫4x

3

e

x

] dx

\\ \Rightarrow yx^4=x^6e^x-6x^5e^x+30x^4e^x-120[x^3e^x-\int 3x^2e^x]\ dx \\ \Rightarrow yx^4=x^6e^x-6x^5e^x+30x^4e^x-120x^3e^x+360[x^2e^x-\int 2xe^x]\ dx

⇒yx

4

=x

6

e

x

−6x

5

e

x

+30x

4

e

x

−120[x

3

e

x

−∫3x

2

e

x

] dx

⇒yx

4

=x

6

e

x

−6x

5

e

x

+30x

4

e

x

−120x

3

e

x

+360[x

2

e

x

−∫2xe

x

] dx

\\ \Rightarrow yx^4=x^6e^x-6x^5e^x+30x^4e^x-120x^3e^x+360x^2e^x-720(xe^x- e^x)+C \\ \Rightarrow yx^4=x^6e^x-6x^5e^x+30x^4e^x-120x^3e^x+360x^2e^x-720xe^x+720 e^x+C

⇒yx

4

=x

6

e

x

−6x

5

e

x

+30x

4

e

x

−120x

3

e

x

+360x

2

e

x

−720(xe

x

−e

x

)+C

⇒yx

4

=x

6

e

x

−6x

5

e

x

+30x

4

e

x

−120x

3

e

x

+360x

2

e

x

−720xe

x

+720e

x

+C

\Rightarrow y=\dfrac{x^6e^x-6x^5e^x+30x^4e^x-120x^3e^x+360x^2e^x-720xe^x+720 e^x+C}{x^4}⇒y=

x

4

x

6

e

x

−6x

5

e

x

+30x

4

e

x

−120x

3

e

x

+360x

2

e

x

−720xe

x

+720e

x

+C

\Rightarrow y=x^2e^x-6xe^x+30e^x-\dfrac{120e^x}{x}+\dfrac{360e^x}{x^2}-\dfrac{720e^x}{x^3}+\dfrac{720 e^x}{x^4}+\dfrac{C}{x^4}⇒y=x

2

e

x

−6xe

x

+30e

x

x

120e

x

+

x

2

360e

x

x

3

720e

x

+

x

4

720e

x

+

x

4

C

Similar questions