General solution of cos + sec =5/2 is
Answers
Answered by
3
Answer:
sectheta + 1/sectheta=5/2
(sec^2theta+1)/sectheta=5/2
2sec^2theta +2=5sectheta+2=0
sectheta=1/2 or 2
sectheta - costheta=3/2 or -3/2
Mark as Brainliest and follow me.....
Answered by
3
Answer:
Step-by-step explanation:
Sec(theta) + cos(theta) = 5/2 ,
Sec(theta) + 1/sec(theta) = 5/2 ,
(sec^2(theta)+1) / sec(theta) = 5/2 ,
2 sec^2(theta) + 2 = 5 sec(theta) ,
2 sec^2(theta) - 5 sec(theta) + 2 = 0 ,
Let sec(theta)=x ,
then,
2 x^2 - 5 x + 2 = 0 ,
2 x^2 - (4+1)x + 2 = 0 ,
2 x^2 - 4 x -x + 2 = 0 ,
2 x(x-2)-1(x-2)=0 ,
(2 x-1)(x-2)=0 ,
Either (2 x-1)=0 => x=1/2 => sec(theta)=1/2 [Since sec(theta)=x] ,
Or (x-2)=0 => x=2 => sec(theta,
Case 1: sec(theta) = 1/2 ,
Now we have Sec(theta) + cos(theta) = 5/2 ,
1/2 + cos(theta) = 5/2 ,
cos(theta) =(5/2 - 1/2) ,
cos(theta)=2 ,
then,
Sec(theta) - cos(theta) = (1/2 - 2) = -3/2 ,
Case 2: sec(theta) = 2 ,
Now we have Sec(theta) + cos(theta) = 5/2 ,
2 + cos(theta) = 5/2 ,
cos(theta) =(5/2 - 2) ,
cos(theta)=1/2 ,
then,
Sec(theta) - cos(theta) = (2 - 1/2) = 3/2 ,
therefore :
sec(theta) - cos(theta)=3/2 or-3/2 ,
—————————————————————————————
EXPLANATION(Shortcut):
Sec(theta) + cos(theta) = 5/2 ,
(Sec(theta) + cos(theta))^2 = (5/2)^2 ,
Sec(theta)^2 + cos(theta)^2 + 2*Sec(theta)*cos(theta) = 25/4 ,
Sec(theta)^2 + cos(theta)^2 + 2*Sec(theta)*(1/Sec(theta)) = 25/4 ,
Sec(theta)^2 + cos(theta)^2 + 2 = 25/4 ,
[Sec(theta)^2 + cos(theta)^2 + 2]- 4 = [25/4] - 4 [Subtracting both sides by 4] ,
Sec(theta)^2 + cos(theta)^2 - 2 = 9/4 ,
Sec(theta)^2 + cos(theta)^2 - 2*Sec(theta)*(1/Sec(theta)) = 9/4,
Sec(theta)^2 + cos(theta)^2 - 2*Sec(theta)*cos(theta) = 9/4 ,
(Sec(theta) - cos(theta))^2 = (3/2)^2 ,
Sec(theta) - cos(theta) = +-3/2.
Hope it helps you!!
Attachments:
Similar questions