General solution of Lagrange equation x^2(y-z)p+y^2(z-x)q=z^2(x-y)
Answers
Answered by
0
Answer:
Here p=∂z∂x and q=∂z∂y
Lagrange's equations are dxx2−yz=dyy2−zx=dzz2−xy
Let the general solution be ϕ(C1,C2)=0
By Choosing multipliers x,y,z and 1,1,1 we get C1 as below.
xdx+ydy+zdzx3+y3+z3−3xyz=dx+dy+dzx2+y2+z2−xy−yz−zx
xdx+ydy+zdz(x+y+z)(x2+y2+z2−xy−yz−zx)=dx+dy+dzx2+y2+z2−xy−yz−zx
xdx+ydy+zdzx+y+z=dx+dy+dz
xdx+ydy+zdz=(x+y+z)d(x+y+z)
x22+y22+z22=(x+y+z)22+C
x2+y2+z2−(x+y+z)2=C1
Now I am not able to find C2. The answer given in the textbook is (x−y)(xy+yz+zx)+y−z=0
Thanks for any hint.
Similar questions
Geography,
5 months ago
Economy,
5 months ago
Math,
5 months ago
English,
10 months ago
Math,
10 months ago
India Languages,
1 year ago
Social Sciences,
1 year ago