Math, asked by priyanshu7777, 1 year ago

Genius type question
solve it maths lovers

Attachments:

Answers

Answered by Abhishek474241
7

\huge\star\underline{\mathcal\color{brown}{HELLO\:MATE}}\star

\color{brown}{HERE\:IS\:YR\:ANS}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\underline\color{Green}{SOL}

SEE THE GIVEN ATTACHMENT

IT IS SO SIMPLE TO SOLVE

\fbox\color{brown}{HOPE\:IT\:HELPS}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\huge{\mathcal{THANKS}}

 <marquee >☝️ABHI♥️☝️

Attachments:

ersangupta: heya
Abhishek474241: hlo
ersangupta: how r uh?
Abhishek474241: f9
ersangupta: nyc
ersangupta: what r uh doing?
Abhishek474241: hmmm
Abhishek474241: nothing.
Anonymous: No more comments here please.
ersangupta: Ohk....
Answered by Anonymous
7

\huge{\red{ANSWER}}

Answer \:  \\  \\ Given  \: cubic\:  \: Polynomial \: is \\  \\ p(x) = x {}^{3}  - 5x {}^{2}  - 2x + 24 \\ this \: equation \: contains \: three \: roots \:  \\ let \: those \: roots \: be \:  \:  \alpha  \:  \:  \:  \:  \beta  \:  \:  \:  \: and \:  \:  \:  \gamma  \\  \\  \alpha +   \beta  +  \gamma  =  \frac{5}{1}  \:  \:  \:  \:  \:  \alpha  \beta  \gamma  =  \frac{  - 12 }{1}  \\  \\ and \:  \:  \:  \:  \:  \:  \alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma  =  \frac{ - 2}{1}  \\  \\ According \:  \: to \: the \: question \:  \:  \:  \:  \alpha  \beta  = 12 \\  \\  \alpha  +  \beta   +  \gamma  = 5 \:  \:  \: ... \:  \: Equation \:  \:  \: i \\  \\  \alpha  \beta  \gamma  =  - 24 \:  \: ...Equation \:  \:  \: ii \\  \\  \alpha  \beta +   \beta  \gamma +   \alpha  \gamma  =  - 2\:  \:  \: ...Equation \:  \:  \: iii \\  \\ put \:  \: value \:  \: of \:  \:  \:  \alpha  \beta  = 12 \:  \:  \: in \:  \: Equation \: ii \: we \: have \\  \\ 12 \times  \gamma  =  - 24 \\  \\  \gamma  =  \frac{ - 24}{12}  \\  \\  \gamma  =   - 2  \\  \\ put \: value \:  \: of \:  \:  \gamma  \:  \: in \: Equation \: i \: we \: have \\  \\  \alpha +   \beta  - 2 = 5 \\  \\  \alpha   + \beta  = 7 \:  \:  \: ....Equation \:  \:  \: iv \\  \\   \beta   = 7 -   \alpha  \\  \\ now \: put \: the \: value \: of \:   \gamma  \:  \:and \:   \:  \beta  \: in \: equation \: iii \: we \: have \\  \\  \alpha (7 -  \alpha )  - 2(7 -  \alpha ) - 2 \alpha  =  - 2 \\  \\ 7 \alpha  -  \alpha  {}^{2}  - 14 +  2\alpha  - 2 \alpha  =  - 2 \\  \\  -  \alpha  {}^{2}  + 7 \alpha  - 12 = 0 \\  \\  \alpha  {}^{2}  - 7 \alpha  + 12 = 0 \\  \\  \alpha  {}^{2}  - 4 \alpha  - 3 \alpha  + 12 = 0 \\  \\  \alpha ( \alpha  - 4) - 3( \alpha  - 4) = 0 \\  \\  \alpha  = 4 \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \alpha  = 3 \\  \\ for \:  \:  \:  \:  \:  \alpha  = 4 \:  \:  \:  \:  \:  \:  \:  \:  \beta  = 3 \\  \\ for \:  \:  \:  \:  \alpha  = 3 \:  \:  \:  \:  \:  \:  \beta  = 4 \\  \\ for \:  \:  \:  \alpha  = 3 \:  \:  \: and \:  \:  \:  \beta  = 4 \:  \:  \:  \:  \gamma  =  - 2 \\  \\ for \:  \:  \:  \:  \alpha  = 4 \:  \:  \:  \: and \:  \:  \:  \:  \beta  = 3 \:  \:  \:  \:  \gamma  \:  =  - 2 \\  \\  \\ therefore \:  \: zeroes \:  \: of \:  \: this \: cubic \: polynomial \:  \\ are \: \:  \:  \:  \: 4 \:  \:  \:  \: 3 \:  \:  \:  \: and \:  \:  \:  - 2 \\  \\ or \\  \\ 3 \:  \:  \: 4 \:  \:  \:  \: and \:  \:  \:  \:  - 2 \\  \\ NOTE \:  \\  \\ for \: a \: general \: cubic \: polynomial \: say \\  \\ f(x) = ax {}^{3}  + bx {}^{2}  + cx + d \\  \\  \alpha +   \beta +   \gamma  =  \frac{ - b}{a}  \\  \\  \alpha  \beta  \gamma  =  \frac{ - d}{a}  \\  \\  \alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma  =  \frac{c}{a}  \\  \\ where \:  \:  \alpha \:  \:  \:  \:  \:   \beta  \:  \:  \: and \:  \:  \gamma  \:  \: are \: its \: zeroes \: .

Similar questions