Get Brainiest Award for Answering
If a+b=3 and a^2+b^2=40 find the value of a^3+b^3
Answers
Answered by
3
Hello Dear!!!
Here's your answer....
Given,
a+b = 3
a^2 + b^2 = 40
then,
a^3 + b^3 is
a^3 + b^3 = (a+b)(a^2 - ab + b^2)
(a+b) = 3
squaring on both sides...
(a+b)^2 = 3^2
a^2 + 2ab + b^2 = 9
40 + 2ab = 9
2ab = 9-40
2ab = -31
ab = -31/2
NOW,
a^3 + b^3 = (a+b)(a^2 - ab + b^2)
= 3(40 -(-31/2))
= 3( 80+31/2)
= 3(111/2)
= 3(55.5)
= 166.5
________________________________________
HOPE THIS HELPS YOU....
Here's your answer....
Given,
a+b = 3
a^2 + b^2 = 40
then,
a^3 + b^3 is
a^3 + b^3 = (a+b)(a^2 - ab + b^2)
(a+b) = 3
squaring on both sides...
(a+b)^2 = 3^2
a^2 + 2ab + b^2 = 9
40 + 2ab = 9
2ab = 9-40
2ab = -31
ab = -31/2
NOW,
a^3 + b^3 = (a+b)(a^2 - ab + b^2)
= 3(40 -(-31/2))
= 3( 80+31/2)
= 3(111/2)
= 3(55.5)
= 166.5
________________________________________
HOPE THIS HELPS YOU....
Similar questions