Science, asked by pp0847148, 1 month ago

Get me physics formulas to calculate velocity and distamce with Derivation graph​

Answers

Answered by ItzBrainlyLords
0

Explanation:

☞︎︎︎ Derivation

 \:

Velocity time relation

 \:

 \large \rm \mapsto \:  \: a =  \dfrac{v - u}{t}

 \:

 \large \rm \mapsto \:  \: v - u = at

 \:

 \large \boxed{ \rm \mapsto  \:  \: v  = u + at}

 \:

Position time relation

 \:

AOCB =

 \large \rm \:  = sum \: of \: parallel \: sides \times  \dfrac{1}{2} h

 \:

 \large \rm \implies \: s = (ao + bc) \dfrac{1}{2 }  \times ad

 \:

 \large \rm \implies \: s = (u + v) \times  \dfrac{1}{2 }  \times t

 \:

v = u + ar

 \:

 \large \rm \implies \: s = (u + u + at)   \dfrac{1}{2 }   t

 \:

 \large \rm \implies \: s = (2u+ at)   \dfrac{1}{2 }   t

 \:

 \large \rm  \therefore  \boxed{\:  \rm \: s = ut +    \dfrac{at ^{2} }{2 }   }

Attachments:
Answered by ItzBrainlyLords
0

Explanation:

☞︎︎︎ Derivation

 \:

Velocity time relation

 \:

 \large \rm \mapsto \:  \: a =  \dfrac{v - u}{t}

 \:

 \large \rm \mapsto \:  \: v - u = at

 \:

 \large \boxed{ \rm \mapsto  \:  \: v  = u + at}

 \:

Position time relation

 \:

AOCB =

 \large \rm \:  = sum \: of \: parallel \: sides \times  \dfrac{1}{2} h

 \:

 \large \rm \implies \: s = (ao + bc) \dfrac{1}{2 }  \times ad

 \:

 \large \rm \implies \: s = (u + v) \times  \dfrac{1}{2 }  \times t

 \:

v = u + ar

 \:

 \large \rm \implies \: s = (u + u + at)   \dfrac{1}{2 }   t

 \:

 \large \rm \implies \: s = (2u+ at)   \dfrac{1}{2 }   t

 \:

 \large \rm  \therefore  \boxed{\:  \rm \: s = ut +    \dfrac{at ^{2} }{2 }   }

Attachments:
Similar questions