Math, asked by lovelysingh55, 11 months ago

Get please answer this question .....​

Attachments:

Answers

Answered by Anonymous
0
Hope it helps
Using identities and algebra answer is yours.
Attachments:
Answered by amitkumar44481
27

Question :

To Prove

  \tt \dagger \:  \:  \:  \:  \: \dfrac{cos \: A - sin \: A +1 }{cos \: A  +  sin \: A  - 1}  = cosec \: A + cot \: A

Solution :

We have,

  \tt \dagger \:  \:  \:  \:  \: \dfrac{cos \: A - sin \: A +1 }{cos \: A  +  sin \: A  - 1}  = cosec \: A + cot \: A

\rule{90}3

Taking LHS.

\tt :  \implies \dfrac{cos \: A - sin \: A +1 }{cos \: A  +  sin \: A  - 1}

Divide Sin A by Denominator, We get.

\tt :  \implies \dfrac{ \dfrac{ cos \: A }{sin \: A}- \dfrac{ sin \: A}{sin \: A} + \dfrac{ 1}{sin \: A}}{\dfrac{ cos \: A }{sin \: A} +  \dfrac{ sin \: A}{sin \: A}  -  \dfrac{ 1}{sin \: A}}

 \tt  : \implies  \dfrac{ cot \: A - 1 + cosec  \: A }{cot \: A  + 1  - cosec  \: A}

 \tt  : \implies  \dfrac{ cot \: A  + cosec  \: A  - 1}{cot \: A   - cosec  \: A + 1}

 \tt  : \implies  \dfrac{ cot \: A  + cosec  \: A - ({cosec }^{2} \: A  - {cot}^{2}  \: A)}{cot \: A  - cosec  \: A + 1}

 \tt  : \implies  \dfrac{ cot \: A  + cosec  \: A - (cosec \: A  - cot \: A)(cosec \: A   + cot \: A)}{cot \: A  - cosec  \: A + 1}

 \tt  : \implies  \dfrac{ cot \: A  + cosec  \: A \Big[1 - (cosec \: A  - cot \: A)\Big]}{cot \: A  - cosec  \: A + 1}

 \tt  : \implies  \dfrac{ cot \: A  + cosec  \: A(1 - cosec \: A   +  cot \: A)}{cot \: A  - cosec  \: A + 1}

 \tt  : \implies  \dfrac{ cot \: A  + cosec  \: A(  cot \: A - cosec \: A  + 1 )}{cot \: A  - cosec  \: A + 1}

 \tt  : \implies  \dfrac{ cot \: A  + cosec  \: A \cancel{ (cot \: A - cosec \: A  + 1 )}}{ \cancel{cot \: A  - cosec  \: A + 1}}

 \tt  : \implies   cot \: A  + cosec  \: A.

Hance Proved.

Similar questions