Math, asked by jpszam2009gmailcom, 10 months ago

get the lapace transform of f(X)=6sin2t-5cos2t​

Answers

Answered by sanjeevk28012
0

Answer:

Laplace Transform of f(x) is \dfrac{12-5S}{S^{2}+4 }

Step-by-step explanation:

Given function as :

f(x) = 6 Sin 2 t - 5 Cos 2 t

Now, Laplace transform of given function as

\zeta ( 6 Sin 2 t - 5 Cos 2 t ) = \int_{0}^{\infty } e^{-st} {  6 Sin 2 t - 5 Cos 2 t } dt

I =  \int_{0}^{\infty } e^{-st}  Sin 2 t dt

Or I = [ \dfrac{-1}{s}e^{-st}Sin 2 t ] o to ∞

i.e I = 0 + [ - \dfrac{2}{s^{2} } e^{-st}  Cos 2 t ] o to ∞ + \int_{0}^{\infty } \dfrac{-4}{S^{2} } Sin 2 t dt

Or, I = \dfrac{2}{S^{2} } - \dfrac{4}{S^{2} } I

Hence, I = \dfrac{2}{S^{2}+4 }

Similarly

\int_{0}^{\infty } e^{-st}  Cos 2 t  dt   = \dfrac{S}{S^{2}+4 }

So, \zeta ( 6 Sin 2 t - 5 Cos 2 t ) = 6 × ( \dfrac{2}{S^{2}+4 } ) - 5 × ( \dfrac{S}{S^{2}+4 } )

I.e Laplace Transform of f(x) = \dfrac{12}{S^{2}+4 }  - \dfrac{5S}{S^{2}+4 }

Hence,  Laplace Transform of f(x) is \dfrac{12-5S}{S^{2}+4 } Answer

Similar questions