(घ) नमन्ति ङ) जिघ्रतः (दो बोलते हैं, बोलता है) (नमस्कार करते हैं, नमस्कार करता है) (सूंघता है, दो सूंघते हैं) (देखते हैं, दो देखते हैं) च) पश्यन्ति
Answers
Explanation:
Given :-
The distance between two consecutive bright fringes in a baptism experiment using light of wavelength 6000 A⁰is 0.32mm
To Find :-
how much will the distance change if light of wavelength 4800A⁰is used?
Solution :-
We know that
\sf \beta _{i} \propto \lambda_{i}\; and \; \beta_{f}\propto \lambda_{f}βi∝λiandβf∝λf
\sf \dfrac{0.32\times 10^{-3}}{\beta_{f}} = \dfrac{6000 \times 10^{-10}}{4800 \times 10^{-10}}βf0.32×10−3=4800×10−106000×10−10
\sf \dfrac{0.32\times10^{-3}}{\beta_{f}} = \dfrac{6000}{4800}βf0.32×10−3=48006000
\sf\dfrac{0.32\times 10^{-3}}{\beta_{f}} = \dfrac{60}{48}βf0.32×10−3=4860
\sf\dfrac{0.32\times 10^{-3}}{\beta_{f}} = 1.25βf0.32×10−3=1.25
\sf 0.32\times 10^{-3} = 1.25\times\beta_{f}0.32×10−3=1.25×βf
\sf \dfrac{0.32\times 10^{-3}}{1.25}=\beta_{f}1.250.32×10−3=βf
\sf 0.25 \times 10^{-3}=\beta_{f}0.25×10−3=βf
Now
\sf Difference = 0.32 \times 10^{-3}-0.25\times 10^{-3}Difference=0.32×10−3−0.25×10−3
\sf Difference = 0.7\times 10^{-3}\;mDifference=0.7×10−3m
Answer:
Step-by-step explanation:
\tt \underline{ \pink{Given:}}Given:
The denominator of a fractions is 4 more than twice the numerator. When both numerator and denominator are decreased by 6, then the denominator becomes 12 times he numerator.
\tt \underline{ \pink{To \: Find}}ToFind
The fraction
\tt{ \underline{ \pink{Solution:}}}Solution:
\pink{ \tt{ Let}}Let
Numerator be x
Denominator=2x+4
\begin{gathered} \sf \: \N ew \:numerator = x - 6 \\ \sf\N ew \: denominator = 2x + 4 - 6 = 2x - 2\end{gathered}Newnumerator=x−6Newdenominator=2x+4−6=2x−2
Now denominator has become 12 times the numerator. So, if we multiply 12 to the numerator after decreasing 6 from it, it will be equal to the denominator after decreasing 6 from it.
\tt \: \red{ ACQ}ACQ
\begin{gathered} \therefore \tt \: 12(x - 6) = 2x - 2 \\ \tt \leadsto12x - 70 = 2x - 2 \\ \tt \leadsto \: 12x - 2x = - 2 + 72 \\ \tt \leadsto10x = 70 \\ \tt \leadsto \: x = \frac{ \cancel{70}}{ \cancel{10} } \\ \green{\underline{ \tt \: x = 7}}\end{gathered}∴12(x−6)=2x−2⇝12x−70=2x−2⇝12x−2x=−2+72⇝10x=70⇝x=1070x=7
Now, numerator=x=7
Denominator=2x+4=2×7+4=14+4=18
\blue{ \tt \: Required \: fraction = \frac{7}{18} }Requiredfraction=187