Math, asked by SuNsHiNe3584, 21 hours ago

giải phương trình (1+y^2)(e^2xdx-e^ydy)-(1+y)dy=0

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

(1 +  {y}^{2} )( {e}^{2x} dx -  {e}^{y} dy) - (1 + y)dy = 0 \\

 \implies {e}^{2x} dx -  {e}^{y} dy -   \bigg(\frac{1 + y}{1 +  {y}^{2} } \bigg)dy = 0 \\

 \implies \int {e}^{2x} dx -   \int{e}^{y} dy -   \int \bigg(\frac{1 + y}{1 +  {y}^{2} } \bigg)dy = 0 \\

 \implies  \frac{ {e}^{2x}}{2} -   {e}^{y} -   \int \frac{1}{1 +  {y}^{2} }dy  -  \int \frac{y}{1 +  {y}^{2} }dy = 0 \\

 \implies  \frac{ {e}^{2x}}{2} -   {e}^{y} -    \tan^{ - 1} (y)  -  \int \frac{y}{1 +  {y}^{2} }dy = 0 \\

 \implies  \frac{ {e}^{2x}}{2} -   {e}^{y} -    \tan^{ - 1} (y)  -  \frac{1}{2}  \int \frac{2y}{1 +  {y}^{2} }dy = 0 \\

 \implies  \frac{ {e}^{2x}}{2} -   {e}^{y} -    \tan^{ - 1} (y)  -  \frac{1}{2}  ln | 1 +  {y}^{2}| = 0 \\

 \implies  \frac{ {e}^{2x}}{2} -   {e}^{y} -    \tan^{ - 1} (y)  -   ln  \sqrt{1 +  {y}^{2}}= 0 \\

Similar questions