Math, asked by Manaseeangel, 1 month ago

gimme ans of this question plss I will mark as brainliest ans of this question ​

Attachments:

Answers

Answered by gpm18
0

Answer:

hiu

nsbdkdkfgkogg9g9snbdjdjfkc

Answered by richapariya121pe22ey
1

Step-by-step explanation:

 \frac{ {2}^{x - 1} +  {2}^{x}  }{ {2}^{x + 1}  -  {2}^{x} }  =  \frac{3}{2}  \\  \frac{ \frac{ {2}^{x} }{ {2}^{1} } +  {2}^{x}  }{ ({2}^{x}  \times   {2}^{1}) -  {2}^{x}  }  =  \frac{3}{2}  \\  \frac{ \frac{ {2}^{x} +(  {2}^{x}   \times  2) }{2} }{( {2}^{x}   \times 2) -  {2}^{x} }  =  \frac{3}{2}  \\  \frac{ {2}^{x}  + ( {2}^{x} \times 2) }{(2 \times 2 \times  {2}^{x}) - ( {2}^{x}  \times 2) }  =  \frac{3}{2}  \\   \frac{  {2}^{x} (1 + 2) }{ {2}^{x} (4 - 2)}  =  \frac{3}{2}  \\  \frac{3 \times  {2}^{x} }{2 \times  {2}^{x} }  =  \frac{3}{2}  \\ x = 0

at x=0, 2^x=1

so lhs =rhs

Similar questions