Ginen a=2 d=8, Sn=90, find n, an and s50
Answers
Answer:
n = 5
a(n) = 34
S(50) = 9900
Step-by-step explanation:
Sum of n terms in an A.P is given by,
Substituting the given values,
90 = n/2 [2(2) + (n – 1)(8)]
90 × 2 = n(4 + (n – 1)(8)]
180 = n (4 + 8n – 8)
180 = n (8n – 4)
180 = 8n² – 4n
8n² – 4n – 180 = 0
4(2n² – n – 45) = 0
2n² – n – 45 = 0
2n² – 10n + 9n – 45 = 0
2n(n – 5) + 9(n – 5) = 0
(n – 5) (2n + 9) = 0
=> n - 5 = 0 ; n = +5
=> 2n + 9 = 0 ; n = –9/2
n can't be negative. So n = 5
______________________
nth term :
Substituting,
______________________
Value of S(50) :
S(50) = 50/2 [ 2(2) + (50 – 1)(8) ]
S(50) = 25 [ 4 + 49(8) ]
S(50) = 25 [ 4 + 392 ]
S(50) = 25 [ 396 ]
S(50) = 9900
Answer:
a=2,d=8,s
n
=90
s
n
=
2
n
[2a+(n−1)d]
90=
2
n
[4+(n−1)8]
180=n[8n−4]
180=8n
2
−4n
=8n
2
−4n−180=0
=2n
2
−n−45=0
=2n
2
−10n+9n−45=0
=2n(n−5)−9(n−5)
=(2n−9)(n−5)
n=5
a
n
=a+(n−1)d
a
n
=2+(5−1)8
a
n
=2+32
a
n
=34