Math, asked by augustus44, 2 months ago

givan sale is ₹ 200000 and ₹ 400000 in year 2018 and 2019 respectively . loss is ₹ 10000 in 2018 and profit is ₹ 20000 in 2019 respectively . compute p/ v ratio​

Answers

Answered by abdulrubfaheemi
0

Answer:

Question⇰

The total cost of flooring a room at Rs.8.50 per sq. metre is Rs.510. If the length of the room is 8 metres, find its breadth ?

Given :-

Flooring of a room = ₹ 8.50

Per square Metre = ₹ 510

Length = 8 m

To find :-

Find its breadth

Let's Do...!

\sf \: Cost \: of \: flooring \: per \: square \: meter = Rs.8.50Costofflooringpersquaremeter=Rs.8.50

\sf \implies Total \: cost \: of \: flooring \: of \: room = Rs.510⟹Totalcostofflooringofroom=Rs.510

\sf∴ Area \: of \: the \: room = \frac{510}{8.50} = 60 \: m {}^{2}∴Areaoftheroom=

8.50

510

=60m

2

Formula used :- ( Area of rectangle )

\sf \pink{ Area \: of \: the \: room = l×b}Areaoftheroom=l×b

Calculation...

\sf \purple\implies 60=8×b⟹60=8×b

\sf \purple\implies b = \frac{60}{8} = 7.5 \: m⟹b=

8

60

=7.5m

\red{\boxed{ \sf∴ Breadth \: of \: the \: room \: is \: 7.5 \: m}}

∴Breadthoftheroomis7.5m

Step-by-step explanation:

Consider the left hand side :

\: \: \pink{: \implies}( \sf \dfrac{x {}^{a} }{x {}^{b}}) {}^{a {}^{2} +ab + b {}^{2}} \times( \dfrac{x {}^{b}}{x {}^{c}}) {}^{{b}^{2} + {bc}^{} + {c}^{2}} \times ( \dfrac{x {}^{2} }{x {}^{a}}) {}^{c {}^{2} + ca + a {}^{2} }:⟹(

x

b

x

a

)

a

2

+ab+b

2

×(

x

c

x

b

)

b

2

+bc

+c

2

×(

x

a

x

2

)

c

2

+ca+a

2

\pink{: \implies}\sf\dfrac{x {}^{a( {a}^{2} + ab + {b}^{2})}}{ {x}^{b( {a}^{2} + ab + {b}^{2})}} \times \dfrac{ {x}^{b( {b}^{2} + bc + {c}^{2})}}{ {x}^{c( {b}^{2} + bc + {c}^{2})}} \times \dfrac{ {x}^{c( {c}^{2} + ca + {a}^{2})}}{ {x}^{a( {c}^{2} + ca + {a}^{2})}}:⟹

x

b(a

2

+ab+b

2

)

x

a(a

2

+ab+b

2

)

×

x

c(b

2

+bc+c

2

)

x

b(b

2

+bc+c

2

)

×

x

a(c

2

+ca+a

2

)

x

c(c

2

+ca+a

2

)

Now, Open the brackets :

\pink{: \implies}\sf{x}^{a( {a}^{2} + ab + {b}^{2})} - {b}^{( {a}^{2} + ab + {b}^{2})} \times {x}^{b( {b}^{2} + bc + {c}^{2})} - {c}^{( {b}^{2} + bc + {c}^{2})} \times {x}^{c( {c}^{2} + ca + {a}^{2})} - {a}^{( {c}^{2} + ca + {a}^{2})}:⟹x

a(a

2

+ab+b

2

)

−b

(a

2

+ab+b

2

)

×x

b(b

2

+bc+c

2

)

−c

(b

2

+bc+c

2

)

×x

c(c

2

+ca+a

2

)

−a

(c

2

+ca+a

2

)

\pink{:\implies}\sf{x}^{(a - b)({a}^{2} + ab + {b}^{2})} \times {x}^{(b - c)({b}^{2} + bc + {c}^{2})} \times {x}^{(c - a)({c}^{2} + ca + {a}^{2})}:⟹x

(a−b)(a

2

+ab+b

2

)

×x

(b−c)(b

2

+bc+c

2

)

×x

(c−a)(c

2

+ca+a

2

)

\pink{: \implies}\sf {x}^{({a}^{3} - {b}^{3})} \times x(({{b}^{3} - c{}^{3}))} \times \:{x}^{({c}^{3} - {a}^{3})}:⟹x

(a

3

−b

3

)

×x((b

3

−c

3

))×x

(c

3

−a

3

)

\: \: \: \: \: \: \: \: \: \pink{: \implies}\sf{x}^{({a}^{3} - {b}^{3} + {b}^{3} - {c}^{3} + {c}^{3} - {a}^{3})}:⟹x

(a

3

−b

3

+b

3

−c

3

+c

3

−a

3

)

Final answer :

\begin{gathered} \: \: \boxed{ \sf\pink{: \implies}{x}^{0}} \\ \\ \: \: \: \: \: \: \: \: \: {\boxed {\boxed{{\pink{: \implies}1}}}}\end{gathered}

:⟹x

0

:⟹1

L.H.S = R.H.S

Hence, Verified.

Similar questions