Give A=2^i+j^+3k^ and B=3i^-2j^-2k^ .Find the unit vector of (i)A+B (ii) A-B
Answers
Answered by
5
Explanation:
Formula to find unit vector is u = +v /I+vla
| +vl = v(i? +j? + ?k)
(A+B)
A = 2i - j+ 3k =
B = 31 - 2j - 2k =
A+B = (2+3)i + (-1+-2)j + (3+(-2))k
A+B = D = 5i - 3j+k
IDI = v52 + 32 +12
IDI =V35
So the unit vector u = (5i -3j +k) /
√35
(A-B)
A = 2i - j+ 3k =
B = 3i - 2j - 2k
A-B = (2-3)i + (-1-(-2))j + (3-(-2))
A-B = C = -i +j+ 5k =
ICI = v(1?+12+53)
ICI = 3v3
So the unit vector u = (-i +j+5k) /
3√3
hope this is helpful
I guess you are a Chaitanya student am I right ??
Answered by
0
A+B=2^i+j^+3k^+3i^-2j^-2k^=5i^-j^+k^. A-B=2i^+j^+3k^-3i^+2j^+2k^=-i^+3j^+5k^
Similar questions
Social Sciences,
4 months ago
English,
4 months ago
Computer Science,
4 months ago
Math,
9 months ago
Hindi,
9 months ago
English,
1 year ago