Physics, asked by sumanmouriya786, 9 months ago

Give A=2^i+j^+3k^ and B=3i^-2j^-2k^ .Find the unit vector of (i)A+B (ii) A-B​

Answers

Answered by chikotisaitejaswini
5

Explanation:

Formula to find unit vector is u = +v /I+vla

| +vl = v(i? +j? + ?k)

(A+B)

A = 2i - j+ 3k =

B = 31 - 2j - 2k =

A+B = (2+3)i + (-1+-2)j + (3+(-2))k

A+B = D = 5i - 3j+k

IDI = v52 + 32 +12

IDI =V35

So the unit vector u = (5i -3j +k) /

√35

(A-B)

A = 2i - j+ 3k =

B = 3i - 2j - 2k

A-B = (2-3)i + (-1-(-2))j + (3-(-2))

A-B = C = -i +j+ 5k =

ICI = v(1?+12+53)

ICI = 3v3

So the unit vector u = (-i +j+5k) /

3√3

hope this is helpful

I guess you are a Chaitanya student am I right ??

Answered by sathwik721
0
A+B=2^i+j^+3k^+3i^-2j^-2k^=5i^-j^+k^. A-B=2i^+j^+3k^-3i^+2j^+2k^=-i^+3j^+5k^
Similar questions