give a big explanation of motion and measurement
Answers
Answer:
element
Explanation:
Answer:
motion and measurement
Explanation:
motion
In physics, motion is the phenomenon in which an object changes its position over time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and time. The motion of a body is observed by attaching a frame of reference to an observer and measuring the change in position of the body relative to that frame with change in time.
If an object is not changing relatively to a given frame of reference, the object is said to be at rest, motionless, immobile, stationary, or to have a constant or time-invariant position with reference to its surroundings. As there is no absolute frame of reference, absolute motion cannot be determined. Thus, everything in the universe can be considered to be in motion.
Motion applies to various physical systems: to objects, bodies, matter particles, matter fields, radiation, radiation fields, radiation particles, curvature and space-time. One can also speak of motion of images, shapes and boundaries. So, the term motion, in general, signifies a continuous change in the positions or configuration of a physical system in space. For example, one can talk about motion of a wave or about motion of a quantum particle, where the configuration consists of probabilities of occupying specific positions.
measurement
Measurement is the assignment of a number to a characteristic of an object or event, which can be compared with other objects or events. The scope and application of measurement are dependent on the context and discipline. In the natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the International vocabulary of metro-logy published by the International Bureau of Weights and Measures. However, in other fields such as statistics as well as the social and behavioral sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales.
Measurement is a cornerstone of trade, science, technology, and quantitative research in many disciplines. Historically, many measurement systems existed for the varied fields of human existence to facilitate comparisons in these fields. Often these were achieved by local agreements between trading partners or collaborators. Since the 18th century, developments progressed towards unifying, widely accepted standards that resulted in the modern International System of Units (SI). This system reduces all physical measurements to a mathematical combination of seven base units. The science of measurement is pursued in the field of metro-logy.