Math, asked by sandeshshrestha2a, 9 days ago

give a correct answer
(don't spam)

Attachments:

Answers

Answered by paripurple2005
1

Answer:

not sure bout' other one

Step-by-step explanation:

hope it would help

Attachments:
Answered by Anonymous
2

Question 1 :

To Prove :

\sf\dfrac{sec\theta+cos\theta}{sec\theta-cos\theta}=\dfrac{1+cos^2{\theta}}{sin^2{\theta}}

LHS :

\sf=\dfrac{sec\theta+cos\theta}{sec\theta-cos\theta}

\sf=\dfrac{\frac{1}{cos\theta}+cos\theta}{\frac{1}{cos\theta}-cos\theta}

\sf=\dfrac{\frac{1+cos^2{\theta}}{cos\theta}}{\frac{1-cos^2{\theta}}{cos\theta}}

\sf=\dfrac{\frac{1+cos^2{\theta}}{\cancel{cos\theta}}}{\frac{1-cos^2{\theta}}{\cancel{cos\theta}}}

\sf=\dfrac{1+cos^2{\theta}}{1-cos^2{\theta}}

  • Using 1 - cos²A = sin²A,

\sf=\dfrac{1+cos^2{\theta}}{sin^2{\theta}}

RHS :

\sf=\dfrac{1+cos^2{\theta}}{sin^2{\theta}}

\bf\therefore LHS = RHS.

  • Hence proved.

Question 2 :

To Prove :

\sf\dfrac{sin^3{\theta}-cos^3{\theta}}{sin\theta-cos\theta}=1+sin\theta cos\theta

LHS :

\sf=\dfrac{sin^3{\theta}-cos^3{\theta}}{sin\theta-cos\theta}

  • Using a³ - b³ = (a - b)(a² + ab + b²)

\sf=\dfrac{(sin\theta-cos\theta)(sin^2{\theta}+sin\theta cos\theta+cos^2{\theta}}{sin\theta-cos\theta}

\sf=\dfrac{\cancel{(sin\theta-cos\theta)}(sin^2{\theta}+sin\theta cos\theta+cos^2{\theta})}{\cancel{(sin\theta-cos\theta)}}

\sf=sin^2{\theta}+sin\theta cos\theta+cos^2{\theta}

\sf=sin^2{\theta}+cos^2{\theta}+sin\theta cos\theta

  • Using cos²A + sin²A = 1,

\sf=1+sin\theta cos\theta

RHS :

\sf=1+sin\theta cos\theta

\bf\therefore LHS = RHS.

  • Hence proved.
Similar questions