Math, asked by prem12399, 3 months ago

give a detailed description please dont. spam​

Attachments:

Answers

Answered by user0888
11

Required Answer

2x^2+3y^2+16z^2+2\sqrt{6} xy-8\sqrt{3} yz-8\sqrt{2} zx=0

Given:-

The solution belongs to real range.

The equation 2x^2+3y^2+4z^2-\sqrt{6} xy-2\sqrt{3} yz-2\sqrt{2} zx=0.

To solve:-

The value of 2x^2+3y^2+16z^2+2\sqrt{6} xy-8\sqrt{3} yz-8\sqrt{2} zx

Solution:-

Given equation is,

\rightarrow \dfrac{1}{2}\times 2(2x^2+3y^2+4z^2-\sqrt{6} xy-2\sqrt{3} yz-2\sqrt{2} zx)=0

Multiply 2 into the parenthesis for complete the square method.

\rightarrow \dfrac{1}{2} \times(4x^2+6y^2+8z^2-2\sqrt{6} xy-4\sqrt{3} yz-4\sqrt{2} zx)=0

\rightarrow \dfrac{1}{2} \times\{(2x^2-2\sqrt{6} xy+3y^2)+(3y^2-4\sqrt{3} yz+4z^2)+(4z^2-4\sqrt{2} zx+2x^2)\}=0

\rightarrow \dfrac{1}{2} \times\{(\sqrt{2} x-\sqrt{3} y)^2+(\sqrt{3} y-2z)^2+(2z-\sqrt{2} x)^2\}=0

Now, since each parenthesis is a perfect square of a real number, they are greater or equal to 0, so each of them equates to 0.

\rightarrow \sqrt{2} x=\sqrt{3} y\ \mathrm{and}\ \sqrt{3} y=2z\ \mathrm{and}\ 2z=\sqrt{2} x

\rightarrow \sqrt{2} x=\sqrt{3} y=2 z ...[Eqn. 1]

Now let's find the value.

2x^2+3y^2+16z^2+2\sqrt{6} xy-8\sqrt{3} yz-8\sqrt{2} zx

=\dfrac{1}{2} \times 2(2x^2+3y^2+16z^2+2\sqrt{6} xy-8\sqrt{3} yz-8\sqrt{2} zx)

Multiplying two, we could complete the square.

=\dfrac{1}{2} \times (4x^2+6y^2+32z^2+4\sqrt{6} xy-16\sqrt{3} yz-16\sqrt{2} zx)

=\dfrac{1}{2} \times \{(2x^2+4\sqrt{6} xy+3y^2)+(3y^2-16\sqrt{3} yz+16z^2)+(16z^2-16\sqrt{2} zx+2x^2)\}

To complete the square, we add some values in the parentheses.

=\dfrac{1}{2} \times \{(8x^2-6x^2+4\sqrt{6} xy+3y^2)+(12y^2-9y^2-16\sqrt{3} yz+16z^2)+(64z^2-48z^2-16\sqrt{2} zx+2x^2)\}

=\dfrac{1}{2} \times \{(8x^2+4\sqrt{6} xy+3y^2)+(12y^2-16\sqrt{3} yz+16z^2)+(64z^2-16\sqrt{2} zx+2x^2)-(6x^2+9y^2+48z^2)\}

=\dfrac{1}{2} \times \{(2\sqrt{2} x+\sqrt{3} y)^2+(2\sqrt{3} y-4z)^2+(8z-\sqrt{2} x)^2-(6x^2+9y^2+48z^2)\}

∵ Eqn. 1

=\dfrac{1}{2} \times \{(2\sqrt{2} x+\sqrt{2} x)^2+(2\sqrt{3} y-2\sqrt{3} y)^2+(8z-2z)^2-(6x^2+9y^2+48z^2)\}

=\dfrac{1}{2} \times \{(3\sqrt{2} x)^2+(6z)^2-(6x^2+9y^2+48z^2)\}

=\dfrac{1}{2} \times \{18 x^2+36z^2-(6x^2+9y^2+48z^2)\}

=\dfrac{1}{2} \times (12 x^2-9y^2-12z^2)

=\dfrac{1}{2} \times \{12 x^2-(3y)^2-(2\sqrt{3} z)^2\}

∵ Eqn. 1

=\dfrac{1}{2} \times \{12 x^2-(\sqrt{6} x)^2-(\sqrt{6} x)^2\}

=\dfrac{1}{2} \times (12 x^2-6x^2-6x^2)

=\boxed{0}

And this is our answer.

Extra information:-

Learn more about the identity:-

Since,

a^3+b^3+c^3-3abc=0

\rightarrow(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0

The second factor can be re-written as,

\dfrac{1}{2} \times 2(a^2+b^2+c^2-ab-bc-ca)

=\dfrac{1}{2} \times(2a^2+2b^2+2c^2-2ab-2bc-2ca)

=\dfrac{1}{2} \{(a-b)^2+(b-c)^2+(c-a)^2\}

The second factor is equal to 0 if and only if a=b=c.

Conclusion:-

So, the condition to satisfy a^3+b^3+c^3=3abc is either a+b+c=0 or a=b=c.

Extra

Now here is an extra question for you.

If three lengths of a triangle satisfy a^3+b^3+c^3=3abc, what is the triangle?

  • A right triangle
  • An equilateral triangle
  • An isosceles triangle
  • A right isosceles triangle
  • A scalene triangle

(Ans. An equilateral triangle)

P.S.

This logic is used in top problems, so it is better to get used to this identity if you seek high scores.

Similar questions