Math, asked by thuhaa1k8, 4 days ago

give a is the largest positive integer satisfying 3log3 (1+√a+∛a) >2log2. Find the integer part of log2 (2017a)

Answers

Answered by Jiya0071
1

Answer:

.

.

.

.

.

.

.

For m=0,n=7

Hence, n=7

Answered by santhosh1234rajap
0

Answer:

Given equation is  

sin  

n

π

 

1

=  

sin  

n

 

1

+  

sin  

n

 

1

 

sin  

n

π

 

1

−  

sin  

n

 

1

=  

sin  

n

 

1

 

sin  

n

sin  

n

π

 

sin  

n

−sin  

n

π

 

=  

sin  

n

 

1

 

sin  

n

sin  

n

π

 

2cos  

n

sin  

n

π

 

=  

sin  

n

 

1

 

sin  

n

 

2cos  

n

 

=  

sin  

n

 

1

 

2cos  

n

sin  

n

=sin  

n

 

sin  

n

=sin  

n

 

The general solution for sinθ=sinα is given by  

θ=pπ+(−1)  

p

α,p∈I

So,  

n

=pπ+(−1)  

p

 

n

,p∈I

If p=2m , then  

n

=2mπ+  

n

 

n

π

=2mπ

or  

n

1

=2m  , which is not possible.  

So, let p=2m+1 then

n

=(2m+1)π−  

n

 

n

=(2m+1)π

n

7

=2m+1

For m=0,n=7

Hence, n=7

Step-by-step explanation:

Make me as the brainliest

Similar questions