give a is the largest positive integer satisfying 3log3 (1+√a+∛a) >2log2. Find the integer part of log2 (2017a)
Answers
Answer:
.
.
.
.
.
.
.
For m=0,n=7
Hence, n=7
Answer:
Given equation is
sin
n
π
1
=
sin
n
2π
1
+
sin
n
3π
1
sin
n
π
1
−
sin
n
3π
1
=
sin
n
2π
1
sin
n
3π
sin
n
π
sin
n
3π
−sin
n
π
=
sin
n
2π
1
sin
n
3π
sin
n
π
2cos
n
2π
sin
n
π
=
sin
n
2π
1
sin
n
3π
2cos
n
2π
=
sin
n
2π
1
2cos
n
2π
sin
n
2π
=sin
n
3π
sin
n
4π
=sin
n
3π
The general solution for sinθ=sinα is given by
θ=pπ+(−1)
p
α,p∈I
So,
n
4π
=pπ+(−1)
p
n
3π
,p∈I
If p=2m , then
n
4π
=2mπ+
n
3π
n
π
=2mπ
or
n
1
=2m , which is not possible.
So, let p=2m+1 then
n
4π
=(2m+1)π−
n
3π
n
7π
=(2m+1)π
n
7
=2m+1
For m=0,n=7
Hence, n=7
Step-by-step explanation:
Make me as the brainliest