Give all exact solutions over the interval [0°, 360°].
4cos2θ=8sinθcosθ
Select one:
a.
30° + 360°n, 90° + 360°n, 150° + 360°n, 210° + 360°n, 270° + 360°n, 330° + 360°n, where n is any integer.
b.
11.8° + 360°n, 78.2° + 360°n, 191.8° + 360°n, 258.2° + 360°n, where n is any integer.
c.
22.5° + 360°n, 112.5° + 360°n, 202.5° + 360°n, 292.5° + 360°n, where n is any integer
d.
0° + 360°n, 60° + 360°n, 180° + 360°, 300° + 360°n, where n is any integer.
Answers
θ = 22.5° , 112.5° , 202.5° , 292.5° in the interval [0°, 360°] for 4cos2θ=8sinθcosθ and 22.5° + 360°n, 112.5° + 360°n, 202.5° + 360°n, 292.5° + 360°n, where n is any integer in the interval (-∞ , ∞)
Given:
- 4cos2θ=8sinθcosθ
To Find:
- All exact solutions over the interval [0°, 360°]
Solution:
4cos2θ = 8sinθcosθ
Step 1 :
Divide both side by 4:
cos2θ = 2sinθcosθ
Step 2 :
Use identity sin2θ = 2sinθcosθ
cos2θ = sin2θ
Step 3 :
Divide both sides by cos2θ and use identity sinx/cosx = tanx
1 = tan2θ
Step 4 :
Use tan 45° = 1 and generalized solution for tanx = tanα as x = 180°n + α
tan 45° = tan2θ
=> 2θ = 180°n + 45°
=> θ = 90°n + 22.5°
All the solution over the interval [0°, 360°].
n = 0 , 1 , 2 , 3 will give
22.5° , 112.5° , 202.5° , 292.5°
Correct answer is 22.5° , 112.5° , 202.5° , 292.5° in the interval [0°, 360°]
Option c) 22.5° + 360°n, 112.5° + 360°n, 202.5° + 360°n, 292.5° + 360°n, where n is any integer given a generalized solution over interval (-∞ , ∞)
and only for n = 0 gives in the interval [0°, 360°]