➡Give all identities ( formula ) of Algebra
( with also expansion )
⭕Content Quality Answer Required
❎ No Spamming ❎
Answers
Answered by
58
Hey mate!
Here is yr answer.....
Identities of Algerbra :
~~~~~~~~~~~~~~~~~~~
(a+b)² = a²+2ab+b²
(a-b)² = a² -2ab +b²
(a+b)(a-b) = a²-b²
(a-b)² +2ab = a²+b²
(a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(x+a)(x+b) = x²+(a+b)x+ab
(a+b)³ = a³+3a²b +3ab²+b³
(a-b)³ = a³-3a²b+3ab²-b³
a³+ b³+c³ -3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
a³+b³ = (a+b)(a²-ab+b²)
a³-b³ = (a-b) (a²+ab+b²)
Hope it helps u...
#BeBrainly
Here is yr answer.....
Identities of Algerbra :
~~~~~~~~~~~~~~~~~~~
(a+b)² = a²+2ab+b²
(a-b)² = a² -2ab +b²
(a+b)(a-b) = a²-b²
(a-b)² +2ab = a²+b²
(a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(x+a)(x+b) = x²+(a+b)x+ab
(a+b)³ = a³+3a²b +3ab²+b³
(a-b)³ = a³-3a²b+3ab²-b³
a³+ b³+c³ -3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
a³+b³ = (a+b)(a²-ab+b²)
a³-b³ = (a-b) (a²+ab+b²)
Hope it helps u...
#BeBrainly
VijayaLaxmiMehra1:
Thanks
Answered by
94
Hey buddy!
Here is yr answer.......
Algebra :
~~~~~~~
<> it is a part or branch of mathematics in which ----
=> Numbers are represented by letters / symbols
=> Quantities are represented by equations / identities/ Formulae
The identities of algebra are :
_______________________
=> (a+b)² = a²+2ab+b²
=>a+b)(a+b) = a²+2ab+b²
=>a²+ab+b²+ab = a²+2ab+b²
=>a²+2ab+b² = a²+2ab+b²
_________________________
=> (a-b)² = a²-2ab+b²
=> a-b) (a-b) = a²-2ab+b²
=> a²-ab+b²-ab = a²-2ab+b²
=> a²-2ab+b² = a²-2ab+b²
_________________________
=> a²-b² = (a+b)(a-b)
=> a²-b² = a(a-b) +b(a-b)
=> a²-b² = a²-ab+ab-b²
=> a²-b² = a²-b²
_________________________
=> a²+b² = (a-b)² +2ab
=> a²+b² = a²-2ab+b² +2ab
=> a²+b² = a²+b²
_____________________________
=> (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
=> (a+b+c)(a+b+c)=a²+b²+c2+2ab+2bc+2ca
=> a²+ab+ac+ab+b²+bc+ac+bc+c² = a²+b²+c2+2ab+2bc+2ca
=> a²+b²+c2+2ab+2bc+2ca = a²+b²+c2+2ab+2bc+2ca
_____________________________
=> (x+a)(x+b) = x²+(a+b)x + ab
=> x(x+b)+a(x+b) = x²+(a+b)x + ab
=> x²+bx+ac+ab = x²+(a+b)x + ab
=> x²+(a+b)x + ab = x²+(a+b)x + ab
_____________________________
=> (a+b)³ = a³+b³+3ab(a+b)
=> (a+b)(a+b)(a+b) = a³+b³+3ab(a+b)
=> a³+b³+3ab(a+b) = a³+b³+3ab(a+b)
_____________________________
=> (a-b)³ = a³+b3+3ab(-a+b)
=> (a-b)(a-b)(a-b) = a³+b3+3ab(-a+b)
=> a³+b3+3ab(-a+b) = a³+b3+3ab(-a+b)
______________________________
=> a³+b³+c³ -3abc = (a+b+c)(a2+b²+c²-ab-bc-ca)
=> a(a²+b²+c²-ab-bc-ca) + b(a²+b²+c²-ab-bc-ca)+c(a²+b²+c²-ab-bc-ca) = (a+b+c)(a2+b²+c²-ab-bc-ca)
=> (a+b+c)(a2+b²+c²-ab-bc-ca) = (a+b+c)(a2+b²+c²-ab-bc-ca)
______________________________
=> a³+b³ = (a+b)(a²-ab+b²)
=> a(a²-ab+b²) + b(a²-ab+b²) = (a+b)(a²-ab+b²)
=> (a+b)(a²-ab+b²) = (a+b)(a²-ab+b²)
______________________________
=> a³ -b³ = (a-b) (a²+ab +b²)
=> a(a²+ab+b²)-b(a²+ab+b²) = (a-b) (a²+ab +b²)
=> (a-b) (a²+ab +b²) = (a-b) (a²+ab +b²)
_____________________________
Hope it helps....
@Destroyer
#Be Brainly
Here is yr answer.......
Algebra :
~~~~~~~
<> it is a part or branch of mathematics in which ----
=> Numbers are represented by letters / symbols
=> Quantities are represented by equations / identities/ Formulae
The identities of algebra are :
_______________________
=> (a+b)² = a²+2ab+b²
=>a+b)(a+b) = a²+2ab+b²
=>a²+ab+b²+ab = a²+2ab+b²
=>a²+2ab+b² = a²+2ab+b²
_________________________
=> (a-b)² = a²-2ab+b²
=> a-b) (a-b) = a²-2ab+b²
=> a²-ab+b²-ab = a²-2ab+b²
=> a²-2ab+b² = a²-2ab+b²
_________________________
=> a²-b² = (a+b)(a-b)
=> a²-b² = a(a-b) +b(a-b)
=> a²-b² = a²-ab+ab-b²
=> a²-b² = a²-b²
_________________________
=> a²+b² = (a-b)² +2ab
=> a²+b² = a²-2ab+b² +2ab
=> a²+b² = a²+b²
_____________________________
=> (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
=> (a+b+c)(a+b+c)=a²+b²+c2+2ab+2bc+2ca
=> a²+ab+ac+ab+b²+bc+ac+bc+c² = a²+b²+c2+2ab+2bc+2ca
=> a²+b²+c2+2ab+2bc+2ca = a²+b²+c2+2ab+2bc+2ca
_____________________________
=> (x+a)(x+b) = x²+(a+b)x + ab
=> x(x+b)+a(x+b) = x²+(a+b)x + ab
=> x²+bx+ac+ab = x²+(a+b)x + ab
=> x²+(a+b)x + ab = x²+(a+b)x + ab
_____________________________
=> (a+b)³ = a³+b³+3ab(a+b)
=> (a+b)(a+b)(a+b) = a³+b³+3ab(a+b)
=> a³+b³+3ab(a+b) = a³+b³+3ab(a+b)
_____________________________
=> (a-b)³ = a³+b3+3ab(-a+b)
=> (a-b)(a-b)(a-b) = a³+b3+3ab(-a+b)
=> a³+b3+3ab(-a+b) = a³+b3+3ab(-a+b)
______________________________
=> a³+b³+c³ -3abc = (a+b+c)(a2+b²+c²-ab-bc-ca)
=> a(a²+b²+c²-ab-bc-ca) + b(a²+b²+c²-ab-bc-ca)+c(a²+b²+c²-ab-bc-ca) = (a+b+c)(a2+b²+c²-ab-bc-ca)
=> (a+b+c)(a2+b²+c²-ab-bc-ca) = (a+b+c)(a2+b²+c²-ab-bc-ca)
______________________________
=> a³+b³ = (a+b)(a²-ab+b²)
=> a(a²-ab+b²) + b(a²-ab+b²) = (a+b)(a²-ab+b²)
=> (a+b)(a²-ab+b²) = (a+b)(a²-ab+b²)
______________________________
=> a³ -b³ = (a-b) (a²+ab +b²)
=> a(a²+ab+b²)-b(a²+ab+b²) = (a-b) (a²+ab +b²)
=> (a-b) (a²+ab +b²) = (a-b) (a²+ab +b²)
_____________________________
Hope it helps....
@Destroyer
#Be Brainly
Similar questions