Math, asked by naughtyjehi, 1 year ago

GIVE ALL TRIGNOMETRY IDENTITIES AND RATIOS WITH EXAMPLES



MATHEMATHICS CLASS 10
CH.8 TRIGNOMETRY

{ 100 points }

••NEeD QUAliTy aNSwEr ••​

Answers

Answered by Anonymous
6

Answer:

Ello ❣️

Step-by-step explanation:

TRIGONOMETRIC RATIOS :-

sine = opposite side / hypotenuse

cosine = adjacent side / hypotenuse

tangent = opposite side / adjacent side

secant = hypotenuse / adjacent side

cosecant = hypotenuse / opposite side

cotangent = adjacent side / opposite side

TRIGONOMETRIC IDENTITIES :-

 {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1 \\  { \ \sec }^{2}  \alpha   \:  -  \:  {tan}^{2}  \alpha  = 1 \\  {cosec}^{2}  \alpha  -  {cot}^{2}  \alpha  = 1 \\ sin \alpha  \times  \frac{1}{cosec \alpha }  = 1 \\ cos \alpha  \times  \frac{1}{sec \alpha }  = 1 \\ tan \alpha  \times  \frac{1}{cot \alpha }  = 1

Answered by Anonymous
12

Answer :-

Now we have a triangle ABC right angled at B

We will consider the angle ACB .

▪️AC is the hypotenuse

▪️AB is Perpendicular to the Base BC

Let the side :-

▪️AB be 'p'

▪️AC be 'h'

▪️CB be 'b'

Now the ratio :-

 Sin\theta = \dfrac{\textsf{Side in front of angle}}{\textsf{ Hypotenuse}} = \dfrac{p}{h}

 Cos\theta = \dfrac{\textsf{Side adjacent of angle}}{\textsf{ Hypotenuse}} = \dfrac{b}{h}

 Tan\theta = \dfrac{\textsf{Side in front of angle}}{\textsf{Side adjacent of angle}} = \dfrac{p}{h}

 Cot\theta = \dfrac{\textsf{Side  Adjacent of angle}}{\textsf{ Side in front of angle}} = \dfrac{p}{h}

 Sec\theta = \dfrac{\textsf{Hypotenuse}}{\textsf{Side adjacent of angle}} = \dfrac{p}{h}

 Cosec\theta = \dfrac{\textsf{Hypotenuse}}{\textsf{ Side in front of angle}} = \dfrac{p}{h}

Now Some basic Identities :-

▪️Sin²∅ + Cos²∅ = 1

▪️Sec²∅ - Tan²∅ = 1

▪️Cosec² - Cot²∅ = 1

\bullet Tan\theta = \dfrac{Sin\theta}{Cos\theta}

\bullet Cot\theta = \dfrac{Cos\theta}{Sin\theta}

\bullet Cosec\theta + Cot\theta = \dfrac{1}{Cosec\theta - Cot\theta}

\bullet Sec\theta + Tan\theta = \dfrac{1}{Sec\theta - Tan\theta}

Some results :-

▪️Sin(A + B) = Sin(A).Cos(B) + Sin(B).Cos(A)

▪️Sin(A - B) = Sin(A).Cos(B) - Sin(B).Cos(A)

▪️Cos(A + B) = Cos(A).Cos(B) - Sin(A).Sin(A)

▪️Cos(A - B) = Cos(A).Cos(B) + Sin(A).Sin(A)

\bullet Tan(A+B)= \dfrac{Tan(A) + Tan(B)}{1 - Tan(A).Tan(B)}

\bullet Tan(A-B)= \dfrac{Tan(A) - Tan(B)}{1 + Tan(A).Tan(B)}

▪️Sin(2A) = 2.Sin(A).Cos(A)

▪️Cos(2A) = Cos²(A) - Sin²(A)

\bullet Tan(2A)= \dfrac{2Tan(A)}{1 - Tan^2(A)}

Attachments:
Similar questions