give an elastic mass of energy relationship and explain the term
Answers
Answer:
Elastic potential energy is energy stored as a result of applying a force to deform an elastic object. The energy is stored until the force is removed and the object springs back to its original shape, doing work in the process. The deformation could involve compressing, stretching or twisting the object. Many objects are designed specifically to store elastic potential energy, for example:
The coil spring of a wind-up clock
An archer's stretched bow
A bent diving board, just before a divers jump
The twisted rubber band which powers a toy airplane
A bouncy ball, compressed at the moment it bounces off a brick wall.
An object designed to store elastic potential energy will typically have a high elastic limit, however all elastic objects have a limit to the load they can sustain. When deformed beyond the elastic limit, the object will no longer return to its original shape. In earlier generations, wind-up mechanical watches powered by coil springs were popular accessories. Nowadays, we don't tend to use wind-up smartphones because no materials exist with high enough elastic limit to store elastic potential energy with high enough energy density
Answer:
Elastic potential energy is stored in a spring that has been stretched or compressed by a distance x away from its equilibrium position.the units N/m. Like all work and energy, the unit of potential energy is the Joule (J), where 1 J = 1 N∙m = 1 kg m2/s2 .