Math, asked by bipinbelliappa555, 4 days ago

give an example for quadratic equation.

help me out 9 class questions 1 mask ​

Answers

Answered by rawatrani1947
0

Answer:

y = x^2 + 3x + 1.

this is your answet

Answered by Teluguwala
13

In general, a real number \alpha is called a root of the quadratic equation ax²+bx+c=0, if  \alpha \alpha^{2} + b\alpha + c = 0. We also say that x = \alpha is a solution of the quadratic equation, or \alpha satisfies the quadratic equation.

 \:

Example :-

 ⟶ \: \bf(x + 2)^{3}  =  {x}^{3}  - 4

 \:

Solution :-

 \sf Here, \\ \sf \: LHS =(x+ 2)^{3}  \:  \:  \:  \: \:  \:  \:  = (x+ 2)^{3}(x+ 2)

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   = (x^{2} + 4x + 4)(x + 2)

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   =  {x}^{3}  +  {2x}^{2}  +  {4x}^{2}  + 8x + 4x + 8

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   =  {x}^{3}  +  6 {x}^{2} + 12x + 8

Therefore, \sf(x + 2)^{3}  =  {x}^{3}  - 4 can be rewritten as \bf{x}^{3}  +  6 {x}^{2} + 12x + 8 =  {x}^{3}  - 4

ie, 6x²+12x+12=0 (or) x²+2x+2=0

It is in the form of ax²+bx+c=0

So, It is a quadratic equation.

 \:

Similar questions