Math, asked by drakshi07, 10 months ago

give an example of irreducible equation​

Answers

Answered by Anonymous
1

Answer:

Step-by-step explanation:

Simple examples

The following six polynomials demonstrate some elementary properties of reducible and irreducible polynomials:

{\displaystyle {\begin{aligned}p_{1}(x)&=x^{2}+4x+4\,={(x+2)(x+2)}\\p_{2}(x)&=x^{2}-4\,={(x-2)(x+2)}\\p_{3}(x)&=9x^{2}-3\,=3\left(3x^{2}-1\right)\,=3\left(x{\sqrt {3}}-1\right)\left(x{\sqrt {3}}+1\right)\\p_{4}(x)&=x^{2}-{\frac {4}{9}}\,=\left(x-{\frac {2}{3}}\right)\left(x+{\frac {2}{3}}\right)\\p_{5}(x)&=x^{2}-2\,=\left(x-{\sqrt {2}}\right)\left(x+{\sqrt {2}}\right)\\p_{6}(x)&=x^{2}+1\,={(x-i)(x+i)}\end{aligned}}}{\displaystyle {\begin{aligned}p_{1}(x)&=x^{2}+4x+4\,={(x+2)(x+2)}\\p_{2}(x)&=x^{2}-4\,={(x-2)(x+2)}\\p_{3}(x)&=9x^{2}-3\,=3\left(3x^{2}-1\right)\,=3\left(x{\sqrt {3}}-1\right)\left(x{\sqrt {3}}+1\right)\\p_{4}(x)&=x^{2}-{\frac {4}{9}}\,=\left(x-{\frac {2}{3}}\right)\left(x+{\frac {2}{3}}\right)\\p_{5}(x)&=x^{2}-2\,=\left(x-{\sqrt {2}}\right)\left(x+{\sqrt {2}}\right)\\p_{6}(x)&=x^{2}+1\,={(x-i)(x+i)}\end{aligned}}}

Over the integers, the first three polynomials are reducible (the third one is reducible because the factor 3 is not invertible in the integers); the last two are irreducible. (The fourth, of course, is not a polynomial over the integers.)

Over the rational numbers, the first two and the fourth polynomials are reducible, but the other three polynomials are irreducible (as a polynomial over the rationals, 3 is a unit, and, therefore, does not count as a factor).

Over the real numbers, the first five polynomials are reducible, but {\displaystyle p_{6}(x)}p_{6}(x) is irreducible.

Over the complex numbers, all six polynomials are reducible.

Answered by Anonymous
1

Answer:

Simple examples

Over the rational numbers, the first two and the fourth polynomials are reducible, but the other three polynomials are irreducible (as a polynomial over the rationals, 3 is a unit, and, therefore, does not count as a factor). is irreducible. Over the complex numbers, all six polynomials are reducible.

Similar questions