Give an example of polynomials f(x), g(x), q(x) and r(x) satisfying f(x) = g(x) .q(x)+ r(x), where degree r (x) = 0.
Answers
||✪✪ QUESTION ✪✪||
Give an example of polynomials f(x), g(x), q(x) and r(x) satisfying f(x) = g(x) .q(x)+ r(x), where degree r (x) = 0 ?
|| ✰✰ ANSWER ✰✰ ||
Let f(x) = 2x⁴ + 8x³ + 6x² +4x +12
→ q(x) = 2
→ g(x) = x⁴ + 4x³ + 3x² + 2x + 1
→ r(x) = 10
Here, degree r(x) = 0
Now, we know that :--
According to EUCLID division lemma :-
a = bq + r where 0 ≤ r < b
Hence,
Let P(x), g(x) , q(x), and r(x) satisfy EUCLID division lemma .
Then,
P(x) = g(x) × Q(x) + r(x)
where, 0≤ r(x) < g(x)
Dividend = Divisor × Quotient + Remainder
Putting values now,
f(x) = q(x) × g(x) + r(x)
→ 2( x⁴ + 4x³ + 3x² + 2x + 1) + 10
→ 2x⁴ + 8x³ + 6x² +4x + 2 +10
→ 2x⁴ + 8x³ + 6x² +4x +12
Hence, above values of f(x) ,q(x) , g(x) and r(x) satisfy the division algorithm.
P(x) = g(x) × Q(x) + r(x)
where, 0≤ r(x) < g(x)
(i) deg.P(x) = deg.g(x)
Let P(x) = x⁴
g(x) = x⁴ -x
Q(x) = 1
r(x) = x
now,
x⁴ = (x⁴ -x) × 1 + x satisfied
(iii) degq(x) = degr(x)
Let q(x) = x -1
r(x) = x
g(x) = x²
P(x) = x³ - x² + x
now,
x³ - x² + x = x²(x -1) + x , satisfied
(iii) deg r(x) = 0
r(x) = 2
g(x) = x +2
q(x) = x³
P(x) = x⁴ + 2x³ + 2
now,
x⁴ + 2x³ + 2 = (x +2)x³ + 2, satisfied..