Biology, asked by SmartShaunak251, 7 months ago

Give and explain the three different pathways by which Pyruvate is broken down further.

Answers

Answered by tripathyspandan23
1

Explanation:

Pyruvate is a key intersection in the network of metabolic pathways. Pyruvate can be converted into carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine, and to ethanol. Therefore, it unites several key metabolic processes.

First, it is broken down into two molecules of pyruvate by a process called glycolosis. ... Then, if oxygen is present, the pyruvate is taken into the mitochondria, and is broken down into Acetyl-CoA (Acetyl coenzyme A), which enters the citric acid cycle, producing high energy hydrogen bonds.

Answered by ravanji786
1

Answer:

carboxyl group is removed from pyruvate, releasing a molecule of carbon dioxide into the surrounding medium. (Note: carbon dioxide is one carbon attached to two oxygen atoms and is one of the major end products of cellular respiration. ) The result of this step is a two-carbon hydroxyethyl group bound to the enzyme pyruvate dehydrogenase; the lost carbon dioxide is the first of the six carbons from the original glucose molecule to be removed. This step proceeds twice for every molecule of glucose metabolized (remember: there are two pyruvate molecules produced at the end of glycolysis); thus, two of the six carbons will have been removed at the end of both of these steps.

Step 2. The hydroxyethyl group is oxidized to an acetyl group, and the electrons are picked up by NAD+, forming NADH (the reduced form of NAD+). The high- energy electrons from NADH will be used later by the cell to generate ATP for energy.

Step 3. The enzyme-bound acetyl group is transferred to CoA, producing a molecule of acetyl CoA. This molecule of acetyl CoA is then further converted to be used in the next pathway of metabolism, the citric acid cycle.

Key Points

In the conversion of pyruvate to acetyl CoA, each pyruvate molecule loses one carbon atom with the release of carbon dioxide.

During the breakdown of pyruvate, electrons are transferred to NAD+ to produce NADH, which will be used by the cell to produce ATP.

In the final step of the breakdown of pyruvate, an acetyl group is transferred to Coenzyme A to produce acetyl CoA.

Key Terms

acetyl CoA: a molecule that conveys the carbon atoms from glycolysis (pyruvate) to the citric acid cycle to be oxidised.

Attachments:
Similar questions