give answer fast please
Attachments:
Answers
Answered by
8
Given:
(l + m)² - 4lm
Option:
- (l + m)²
- (2l + m)²
- (l + m)²
- (4l + 5)
What To Do:
We have to factorise the expressions.
Solution:
(l + m)² - 4lm
Factorise (l + m)² using the identity [(a + b)² = a² + 2ab + b²]
⇒ l² + 2lm + m² - 4lm
Rearrange the like terms,
⇒ l² + 2lm - 4lm + m²
Solve the like terms,
⇒ l² - 2lm + m²
Using the identity [(a - b)² = a² - 2ab + b²],
⇒ l² - m² or (l - m)²
∴ Hence, (l - m)² option 3 is correct.
Identity Used:
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
Similar questions
Math,
2 months ago
Business Studies,
2 months ago
English,
2 months ago
India Languages,
5 months ago
English,
5 months ago
English,
11 months ago
Math,
11 months ago