Math, asked by Vaibhav980, 1 year ago

Give answer fast

 \frac{coseca}{coseca - 1} +  \frac{coseca}{coseca + 1}  = 2 {sec}^{2} a
Plzzzz

Answers

Answered by Anonymous
11

Solution

To prove:

 \sf{ \frac{cosec \: x}{cosec \: x  -  1} +  \frac{cosec \: x}{cosec \: x + 1}  = 2sec {}^{2}x } \\

LHS:

 \sf{ \frac{cosec \: x(cosec \: x + 1) + cosec \: x(cosec \: x - 1)}{(cosec \: x + 1)(cosec \: x - 1)} } \\   \\  =   \sf{\frac{cosec {}^{2}x +  \cancel{cosec \: x} + cosec {}^{2}x -  \cancel{cosec \: x}  }{cosec {}^{2}x - 1 }}  \\  \\  =   \sf{\frac{2cosec{}^{2}x }{cot{}^{2}x }}  \\  \\  =   \sf{\frac{ \frac{2}{ \cancel{sin {}^{2}x}} }{ \frac{cos {}^{2}x }{ \cancel{sin {}^{2}x }}}}  \\  \\  =   \sf{\frac{2}{cos{}^{2}x }} \\  \\  =  \sf{2sec{}^{2}x }

Hence,proved

Answered by Anonymous
9

Answer:

\huge \bold \color{pink} \colorbox{red}{answer}

Attachments:
Similar questions