Give answer of question as fast as possible
sin^3x cos^3x
Answers
Answered by
7
To solve this problem let's multiply (sin x - cos x) and (1 + sin x* cos x).
(sin x - cos x)*(1 + sin x*cos x)
= sin x + (sin x)^2 * cos x - cos x - sin x * (cos x )^2
Now (sin x)^2 + (cos x)^2 = 1 or (sin x)^2 = 1- (cos x)^2 and (cos x)^2 = 1 - (sin x)^2.
So sin x + (sin x)^2 * cos x - cos x - sin x * (cos x )^2
= sin x + [1- (cos x)^2] * cos x - cos x - sin x *[ 1 - (sin x)^2]
= sin x + cos x - (cos x)^3 - cos x - sin x + ( sin x)^3
subtracting common terms
= ( sin x)^3 - (cos x)^3
Therefore sin^3 x - cos^3 x = (sin x - cos x)(1 + sin x*cos x)
(sin x - cos x)*(1 + sin x*cos x)
= sin x + (sin x)^2 * cos x - cos x - sin x * (cos x )^2
Now (sin x)^2 + (cos x)^2 = 1 or (sin x)^2 = 1- (cos x)^2 and (cos x)^2 = 1 - (sin x)^2.
So sin x + (sin x)^2 * cos x - cos x - sin x * (cos x )^2
= sin x + [1- (cos x)^2] * cos x - cos x - sin x *[ 1 - (sin x)^2]
= sin x + cos x - (cos x)^3 - cos x - sin x + ( sin x)^3
subtracting common terms
= ( sin x)^3 - (cos x)^3
Therefore sin^3 x - cos^3 x = (sin x - cos x)(1 + sin x*cos x)
Answered by
15
HEY!!
_________________________
✴Refer to the following attachment :-
_________________________
✴Refer to the following attachment :-
Attachments:
Similar questions