Math, asked by devanshrastogi35, 3 months ago

give answer only on paper
step by step
previously people just did spam
and didn't gave full answer
plzzzz only answer on paper​

Attachments:

Answers

Answered by aryan073
5

Given :

\\ \red\bigstar \sf{I=\bigg \lmoustache \: \: \dfrac{1-x^{2}}{x(1-2x)} dx}

________________________________________

To Find:

\\ \bf{ The \: value \: of \: I=\bigg\lmoustache \: \: \dfrac{1-x^{2}}{x(1-2x)}=?}

________________________________________

Solution :

\\ \implies\sf{I= \bigg\lmoustache \: \: \dfrac{1-x^{2}}{x(1-2x)}}

\\ \implies\sf{I=\bigg\lmoustache \: \: \dfrac{1}{2}+\dfrac{1}{2}\bigg(\dfrac{2-x}{x(1-2x)}\bigg) }

•Let \sf{\dfrac{2-x}{x(1-2x)}=\dfrac{A}{x}+\dfrac{B}{(1-2x) }}

\\ \sf{\big(2-x \big)=A \big(1-2x \big)+Bx \: \:   \: \:  ....(1)}

•Substituting x=0 and \bf{\dfrac{1}{2}} in equation (1) , we obtain

A=2 and B=3

\\ \sf{\therefore \: \: \dfrac{2-x}{x(1-2x)}=\dfrac{2}{x}+\dfrac{3}{(1-2x)}}

Substituting in equation (1) , we obtain :

 \\  \\ \implies \sf \:  \frac{1 -  {x}^{2} }{x(1 - 2x)}  =  \frac{1}{2}  +  \frac{1}{2}  \bigg \{ \frac{2}{x}  +  \frac{3}{(1 - 2x)}  \bigg \}

 \\   \\ \implies \sf \: \bigg  \lmoustache \frac{1 - {x}^{2} }{x(1 - 2x)}dx  =  \bigg \lmoustache \:  \bigg \{ \frac{1}{2}  +  \frac{1}{2}  \bigg( \frac{2}{x}  +  \frac{3}{1 - 2x}  \bigg) \bigg \}dx \\  \\  \\  \\   \implies \sf \:    \bigg\lmoustache  \frac{1 -  {x}^{2} }{x(1 - 2x)} dx =  \frac{x}{2}  + log |x|  +  \frac{3}{2( - 2)} log |1 - 2x|  + c \\  \\  \\  \\  \implies \sf \:  \bigg \lmoustache  \frac{1 -  {x}^{2} }{x(1 - 2x)} dx =  \frac{x}{2}  + log |x|  -  \frac{3}{4} log |1 - 2x|  + c \\  \\  \\

\\ \red\bigstar \boxed{\sf{\bigg\lmoustache \dfrac{1-x^{2}}{x(1-2x)}dx=\dfrac{x}{2}+log|x|-\dfrac{3}{4}log|1-2x|+c}}

Integration formulas :

\\ \bf{(1) \bigg\lmoustache \: 1 dx =x+C}

\\ \bf{(2) \bigg\lmoustache \:  a \: dx=ax+C}

\\ \bf{(3) \bigg\lmoustache  \: x^{n}dx=\dfrac{x^{n+1}}{n+1}+C}

\\ \bf{(4) \bigg\lmoustache \: sinx dx=-cosx+C}

\\ \bf{(5) \bigg\lmoustache \: cosx dx=sinx+C}

\\ \bf{(6) \bigg\lmoustache \: sec^{2}x dx=tanx+C}

\\ \bf{(7) \bigg\lmoustache \: cosec^{2}x=-cotx+C}

\\ \bf{(8) \bigg\lmoustache \: secx.tanx dx=secx+C}

\\ \bf{(9) \bigg\lmoustache \:cosecx(cotx) dx=-cosecx+C}

\\ \bf{(10) \bigg\lmoustache \: \dfrac{1}{x} dx=ln(x)+C}

\\ \bf{(11) \bigg\lmoustache \: e^{x}dx=e^{x}+C}

\\ \bf{(12) \bigg\lmoustache \: a^{x}dx=\dfrac{a^{x}}{lna}+C}

\\ \bf{(13) \bigg\lmoustache \: \dfrac{1}{\sqrt{1-x^{2}} }\: dx=  sin^{-1}x+C}

\\ \bf{(14) \bigg\lmoustache \: \dfrac{1}{1+x^{2}}dx=tan^{-1}x}

Similar questions