Math, asked by amrita5723, 3 months ago

Give answer right

✌️✌️✌️wrong answer will be reported.​

Attachments:

Answers

Answered by CopyThat
44

Answer:

\frac{1}{\sqrt9-\sqrt8}\;=\;3+2\sqrt2

Step-by-step explanation:

Given :

\frac{1}{\sqrt9-\sqrt8}

To find :

To prove that \frac{1}{\sqrt9-\sqrt8} is equal to 3+2\sqrt2.

Solution :

\frac{1}{\sqrt9-\sqrt8}\;*\;\frac{\sqrt9+\sqrt8}{\sqrt9+\sqrt8}

(a+b)(a-b)=a^2-b^2

\frac{\sqrt9+\sqrt8}{(\sqrt9)^2-(\sqrt8)^2}

\frac{\sqrt9+\sqrt8}{9-8}

\frac{3+2\sqrt2}{1}

3+2\sqrt2

Hence, proved !

Answered by GraceS
1

\tt\huge\purple{hello!!!}

HERE IS UR ANSWER

_____________________________

 \frac{1}{ \sqrt{9} -  \sqrt{8}  }  \\ rationalising \: denominator \\  \frac{1}{ \sqrt{9} -  \sqrt{8}  }  \times  \frac{ \sqrt{9} +  \sqrt{8}  }{ \sqrt{9}  +  \sqrt{8} }  \\  \frac{ \sqrt{9}  +  \sqrt{8} }{9 - 8}  \\ \sqrt{9}  +  \sqrt{8}  \\  3 + 2 \sqrt{2}

Similar questions