Math, asked by Kusumsahu7, 1 year ago

Give answer with full explanation

No unnecessary answer​

Attachments:

kkjsb: @odisha?

Answers

Answered by Anonymous
57

Answer :-

→ 42,640.

Step-by-step explanation :-

To find :-

 \tt \rightarrow {(10)}^{2}  +  {(11)}^{2}  +  {(12)}^{2}  + ...... +  {(50)}^{2} .

We have,

 \sf \rightarrow   {1}^{2} +   {2}^{2}  = \frac{2 \times 3 \times 5}{6} .  \\ \\  \sf \rightarrow {1}^{2}  +  {2}^{2}  +  {3}^{2}  =  \frac{3 \times 4 \times 7}{6} . \\  \\  \sf \rightarrow {1}^{2}  +  {2}^{2}  +  {3}^{2}  +  {4}^{2}  =  \frac{4 \times 5 \times 9}{6} .

Let last squared number of LHS be a .

The system followed in this equation is :

 \sf \implies {1}^{2}  +  {a}^{2}  = \frac{ [ a  \times  ( a + 1 )  \times ( a + ( a + 1 ) ]}{6} . \\  \\  \sf \implies {1}^{2}  +  {2}^{2}  +  {a}^{2}  = \frac{ [ a  \times  ( a + 1 )  \times ( a + ( a + 1 ) ]}{6}. \\  \\  \sf \implies {1}^{2}  +  {2}^{2}  +  {3}^{2}  +  {a}^{2}  = \frac{ [ a  \times  ( a + 1 )  \times ( a + ( a + 1 ) ]}{6}.

Now,

We have to find

(1)² + (2)² + (3)³ .... (9)² =  \sf \frac{9 \times 10 \times 19}{6} = 285

Here a = 9 .

So,

Now,

(10)² + (11)² + (12)² + ..... (50)² .

Here a = 50 .

Then,

  \tiny \sf \rightarrow {(10)}^{2}  +  {(11)}^{2}  +  {(12)}^{2}  + ...... +  {(50)}^{2} . =  \frac{50 \times (50 + 1)  \times (50 + (50 + 1))}{6} - 285  . \\  \\  \sf =  \frac{50 \times 51 \times 101}{6} - 285 \\ \\ \huge \pink{ \boxed{ \it = 42,640. }}

Hence, it is solved .


Anonymous: i got it , editing....
sivaprasath: It is (1^2 + 2^2 + 3^2 +... + 50^2) = (10 x (10 + 1) x (2 x 10 + 1)
sivaprasath: It is (1^2 + 2^2 + 3^2 +... + 9^2) = (9 x (9 + 1) x (2 x 9 + 1)
sivaprasath: (1^2 + 2^2 + 3^2 +... + 50^2) = (50 x (50 + 1) x (2 x 50 + 1) (that one was typing mistake
sivaprasath: hence ,(10^2 + 11^2 + 12^2 +... + 50^2) = (50 x (50 + 1) x (2 x 50 + 1) - (9 x (9 + 1) x (2 x 9 + 1) /6
Anonymous: yeah, I forgot that thing , now it's okay
sivaprasath: edit again bro,.
sivaprasath: ok ok, I saw that,.
Anonymous: any problem ?
Kusumsahu7: Thanks sir
Answered by pratyush4211
34
Given

 {1}^{2} + {2}^{2} = \frac{5 \times 3 \times 2}{6}

 {1}^{2} + {2}^{2} + {3}^{2} + {4}^{2} = \frac{4 \times 5 \times 9}{6} \\ \\ {1}^{2} + {2}^{2} + {3}^{2} + {4}^{2} = \frac{4 \times 5 \times 9}{6}

Following This Series Things To Be Noted.

When we Divide 6 from Product in Fraction we get Sum of Squares of given Terms.

Like 1²=1+2²=4 1+4=5

2×3×5/6=30/6=5

We get Sum of Square.

Now we have to Find Value of

 {10}^{2} + {11}^{2} + .... + {50}^{2}

First Find The Sum of First 9 numbers Square.

1²=1,2²=4,3²=9,4²=16,5²=25,6²=36,7²=49,8²=64,9²=81.

There Sum

1+4+9+16+25+36+49+64+81=285

Now to Find Sum of Square of 1 to 50

Use Formula

n(n + 1)(2n + 1) \div 6

Where n=Total Number.

50(50 + 1)(2 \times 50 + 1) \div 6 \\ \\ 50 \times 51 \times 101 \div 6 \\ \\ 42925

Sum of First 50 numbers Square=42925

Sum of First 9 numbers Square=285

Sum of 10²+11²+...+50²=42925-285

=42640

For Finding Sum in Fraction

Let =Three Terms In Numerator=(a×b×c)

We know (a×b×c)÷6=Sum of The Numbers

 \frac{a \times b \times c}{6} = 42640 \\ \\ a \times b \times c = 42640 \times 6

Prime Factors of

42640=2×2×2×2×5×13×41

a \times b \times c = (2 \times 2 \times 2 \times 2 ) \times ( 5 \times 13) \times(41\times6) \\ \\ = 16 \times 65 \times246

So

 \it{\large{ {10}^{2} + {11}^{2} + {12}^{2} + ... + {50}^{2} = 42640}}

 \it{\large{{10}^{2} + {11}^{2} + {12}^{2} + ... + {50}^{2} = \frac{16 \times 65 \times 246}{6}} }

Kusumsahu7: Thanks sir
pratyush4211: :)
Similar questions