Biology, asked by aditimalakar8, 7 months ago

give any two reasons why Mandel's experiment on mono and dihybrid cross was successful . how many games we need to get all the genotypes as Mendel receive in his typical dihybrid cross

Answers

Answered by prangyadas0
0

Explanation:

Gregor Mendel was born in the district of Moravia, then part of the Austro-Hungarian Empire. At the end of high school, he entered the Augustinian monastery of St. Thomas in the city of Brünn, now Brno of the Czech Republic. His monastery was dedicated to teaching science and to scientific research, so Mendel was sent to a university in Vienna to obtain his teaching credentials. However, he failed his examinations and returned to the monastery at Brünn. There he embarked on the research program of plant hybridization that was posthumously to earn him the title of founder of the science of genetics.

Mendel’s studies constitute an outstanding example of good scientific technique. He chose research material well suited to the study of the problem at hand, designed his experiments carefully, collected large amounts of data, and used mathematical analysis to show that the results were consistent with his explanatory hypothesis. The predictions of the hypothesis were then tested in a new round of experimentation.

Mendel studied the garden pea (Pisum sativum) for two main reasons. First, peas were available from seed merchants in a wide array of distinct shapes and colors that could be easily identified and analyzed. Second, peas can either self (self-pollinate) or be cross-pollinated. The peas self because the male parts (anthers) and female parts (ovaries) of the flower—which produce the pollen containing the sperm and the ovules containing eggs, respectively—are enclosed by two petals fused to form a compartment called a keel (Figure 2-1 ). The gardener or experimenter can cross (cross-pollinate) any two pea plants at will. The anthers from one plant are removed before they have opened to shed their pollen, an operation called emasculation that is done to prevent selfing. Pollen from the other plant is then transferred to the receptive stigma with a paintbrush or on anthers themselves (Figure 2-2 ). Thus, the experimenter can choose to self or to cross the pea plant. A pea flower with the keel cut and opened to expose the reproductive parts.

A pea flower with the keel cut and opened to expose the reproductive parts. The ovary is shown in a cutaway view. (After J. B. Hill, H. W. Popp, and A. R. Grove, Jr., Botany. Copyright © 1967 by McGraw-Hill.)

One of the techniques of artificial cross-pollination, demonstrated with the Mimulus guttatus, the yellow monkey flower.

One of the techniques of artificial cross-pollination, demonstrated with the Mimulus guttatus, the yellow monkey flower. To transfer pollen, the experimenter touches anthers from the male parent to the stigma of an emasculated flower, which acts as the (more...)

Other practical reasons for Mendel’s choice of peas were that they are inexpensive and easy to obtain, take up little space, have a short generation time, and produce many offspring. Such considerations enter into the choice of organism for any piece of genetic research.

Similar questions