Physics, asked by sskhere, 5 months ago

give correct answer only​

Attachments:

Answers

Answered by BrainlyEmpire
1

Given :-

  • Mass of a body = 30 kg
  • Initial speed of a body = 20 m/s
  • Final speed of a body = 15 m/s

To Find :-

  • The change in kinetic energy of the body

Solution :-

  • The Kinetic energy of a body is given by ,

 \\  \star \: {\boxed{\purple{\sf{KE =  \dfrac{1}{2}m {v}^{2}  }}}} \\

First let us calculate the initial kinetic energy of the body . we have ,

  • m = 30 kg
  • u = 20 m/s

 \\   : \implies \sf \:KE_{i} =  \dfrac{1}{2}   \times 30 \times  {(20)}^{2}  \\  \\

 \\  :  \implies \sf \: KE_{i} =  15 \times  {(20)}^{2}   \\  \\

 \\   : \implies \sf \: KE_{i} = 15 \times 400 \\  \\

 \\   : \implies{\underline{\boxed{\red{\mathfrak{KE_{i} = 6000 \: J}}}}} \\  \\

So , The initial kinetic energy of the body is 6000 J.

Now , Let us calculate the Final kinetic energy of the body. We have ,

  • m = 30 kg
  • v = 15 m/s

 \\   : \implies \sf \:KE_{f} =  \dfrac{1}{2}   \times 30 \times  {(15)}^{2}  \\  \\

 \\  :  \implies \sf \: KE_{f} =  15 \times  {(15)}^{2}   \\  \\

 \\   : \implies \sf \: KE_{f} = 15 \times 225\\  \\

 \\   : \implies{\underline{\boxed{\red{\mathfrak{KE_{f} = 3375 \: J}}}}} \\  \\

Now , Calculating the change in kinetic energy ;

  •  \\  :  \implies \sf \Delta \: KE = KE_{f} - KE_{i} \\  \\
  •  \\   : \implies \sf \Delta \: KE = 3375 - 6000 \\  \\
  •  \\  : \implies{\underline{\boxed{\pink{\mathfrak {\Delta \:KE =  - 2625 \: J}}}}}  \: \bigstar \\  \\

Hence ,

The Change in kinetic energy of the given body is 2625 J.

Answered by PeeyushVerma
14

Explanation:

Solution :-

K.E=1/2mv2

M=30kg

So, kinetic Energy =>1/2×30×20×20=6000J

When,V=15

Then,K.E=1/2×30×15×15=3375

Difference between K.E=3375-6000

=>Ans=-2225

Similar questions