Give Explanation. Don't post irrelevant answers ❌. Class 11th
Answers
Option (3)
→ Contains exactly Two elements.
⇒Possible Values of x are 4 and 16.
ANSWER :
❖ (3) Contains exactly two elemets.
- ✎ Let S = {x ∈ R: x ≥ 0 and 2 |√x - 3| + √x (√x - 6) + 6 = 0}. Then S contains exactly two elements.
___________________________________________________________
SOLUTION :
❒ Given :-
- The set is S = {x ∈ R : x ≥ 0 and 2 |√x - 3| + √x (√x - 6) + 6 = 0}
Here, we have,
- x ∈ R : x ≥ 0
- 2 |√x - 3| + √x (√x - 6) + 6 = 0
Suppose,
- √x - 3 = a ----------> (1)
Then
- √x = a + 3 ----------> (2)
Now,
- ★ 2 |√x - 3| + √x (√x - 6) + 6 = 0
⇒ 2 |a| + (a + 3) {(a + 3) - 6} + 6 = 0 [From (1) and (2)]
⇒ 2 |a| + (a + 3) (a + 3 - 6) + 6 = 0
⇒ 2 |a| + (a + 3) (a - 3) + 6 = 0
⇒ 2 |a| + (a² - 3²) + 6 = 0
⇒ 2 |a| + a² - 9 + 6 = 0
⇒ 2 |a| + a² - 3 = 0
⇒ a² + 2 |a| - 3 = 0
This equation can be written as :
- ★ |a|² + 2 |a| - 3 = 0
⇒ |a|² + 3 |a| - |a| - 3 = 0
⇒ |a| (|a| + 3) - 1 (|a| + 3) = 0
⇒ (|a| + 3) (|a| - 1) = 0
So,
- |a| + 3 = 0
➝ |a| = - 3; but |a| ≠ - 3
Or,
- |a| - 1 = 0
➝ |a| = 1
➝ a = ± 1
Again,
- √x - 3 = a
➜ √x - 3 = ± 1
Therefore,
- ✠ √x - 3 = 1
➨ √x = 3 + 1
➨ √x = 4
➨ x = (4)²
∴ x = 16
And,
- ✠ √x - 3 = - 1
➨ √x = 3 - 1
➨ √x = 2
➨ x = (2)²
∴ x = 4
Thus,
- x = 16, 4
It implies that, if set S = {x ∈ R : x ≥ 0 and 2 |√x - 3| + √x (√x - 6) + 6 = 0}, then S = {16, 4}.
Hence, this set S contains exactly two elements.