Give Explanation for your Answer (Q.22 )
Attachments:
Answers
Answered by
1
hey mate
here's the solution
here's the solution
Attachments:
Answered by
3
(22)
Given Equation is (x + iy)^(1/3) = (a + ib)
On cubing both sides, we get
⇒ (x + iy) = (a + ib)^3
We know that (a + b)^3 = a^3 + b^3 + 3ab(a + b).
= a^3 + (ib)^3 + 3(a)(ib)(a + ib)
= a^3 + i^3b^3 + 3aib(a + ib)
= a^3 + (i^2)(i)b^3 + 3a^2ib + 3ai^2b^2
We know that i^2 = -1
= a^3 - ib^3 + 3a^2ib - 3ab^2
= a^3 - 3ab^2 + 3a^2ib - ib^3
= a^3 - 3ab^2 + i(3a^2b - b^3)
(x + iy) = a^3 - 3ab^2 + i(3a^2b - b^3)
Equating real and imaginary parts on both sides, we get
⇒ x = a^3 - 3ab^2
⇒ y = 3a^2b - b^3.
Now,
⇒ (x/a) - (y/b)
⇒ (a^3 - 3ab^2/(a)) - (3a^2b - b^3/(b))
⇒ a^2 - 3b^2 - 3a^2 + b^2
⇒ -2a^2 - 2b^2
⇒ -2(a^2 + b^2)
Hope it helps!
Anny121:
thanks a bunch ! ^^
Similar questions