give full solution
question number 14
no irrelevant answers
Attachments:
Answers
Answered by
6
Given:
Hence,
Answered by
3
Given:
{x}^{3} + {ax}^{2} - bx + 10x3+ax2−bx+10
\textbf{is divisible by}is divisible by
{x}^{2} - 3x + 2x2−3x+2
\text{To Find: Value of a and b}To Find: Value of a and b
\huge \fbox \pink{Solution:}Solution:
{x}^{2} - 3x + 2 = (x - 2)(x - 1)x2−3x+2=(x−2)(x−1)
∴ {x}^{3} + {ax}^{2} - bx + 10∴x3+ax2−bx+10
\text{is divisible by}is divisible by
x - 2 \: and \: x - 1x−2andx−1
\fbox{So,}So,
f(x) = {x}^{3} + {ax}^{2} - bx + 10f(x)=x3+ax2−bx+10
∴f(1) = 0 \: and \: f(2) = 0∴f(1)=0andf(2)=0
⇒ {1}^{3} + a. {1}^{2} - b.1 + 10 = 0⇒13+a.12−b.1+10=0
⇒a≠b = - 11 - (1)⇒a=b=−11−(1)
\fbox{Again,}Again,
{2}^{3} + a. {2}^{2} - b.2 + 10 = 023+a.22−b.2+10=0
⇒2a - b = - 9 - (2)⇒2a−b=−9−(2)
⇒(2) - (1)→a = 2⇒(2)−(1)→a=2
∴b = 13∴b=13
Hence,
:a = 2 ,b = 13:a=2,b=13
:(
Similar questions