Math, asked by satya2061, 4 months ago

give full solution
question number 14
no irrelevant answers ​

Attachments:

Answers

Answered by itzPapaKaHelicopter
6

\huge \fbox \green{❤Answer:}

Given:

 {x}^{3}  +  {ax}^{2}  - bx + 10

 \textbf{is  divisible by}

 {x}^{2}  - 3x + 2

\text{To Find: Value of a and b}

\huge \fbox \pink{Solution:}

 {x}^{2}  - 3x + 2 = (x - 2)(x - 1)

∴ {x}^{3}  +  {ax}^{2}  - bx + 10

\text{is divisible by}

x - 2 \: and \: x - 1

\fbox{So,}

f(x) =  {x}^{3}  +  {ax}^{2}  - bx + 10

∴f(1) = 0 \: and \: f(2) = 0

⇒ {1}^{3}  + a. {1}^{2}  - b.1 + 10 = 0

⇒a≠b =  - 11 - (1)

\fbox{Again,}

 {2}^{3}  + a. {2}^{2}  - b.2 + 10 = 0

⇒2a - b =  - 9 - (2)

⇒(2) - (1)→a = 2

∴b = 13

Hence,

:a = 2  ,b = 13

 \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Answered by Anonymous
3

Given:

{x}^{3} + {ax}^{2} - bx + 10x3+ax2−bx+10

\textbf{is divisible by}is divisible by

{x}^{2} - 3x + 2x2−3x+2

\text{To Find: Value of a and b}To Find: Value of a and b

\huge \fbox \pink{Solution:}Solution:

{x}^{2} - 3x + 2 = (x - 2)(x - 1)x2−3x+2=(x−2)(x−1)

∴ {x}^{3} + {ax}^{2} - bx + 10∴x3+ax2−bx+10

\text{is divisible by}is divisible by

x - 2 \: and \: x - 1x−2andx−1

\fbox{So,}So,

f(x) = {x}^{3} + {ax}^{2} - bx + 10f(x)=x3+ax2−bx+10

∴f(1) = 0 \: and \: f(2) = 0∴f(1)=0andf(2)=0

⇒ {1}^{3} + a. {1}^{2} - b.1 + 10 = 0⇒13+a.12−b.1+10=0

⇒a≠b = - 11 - (1)⇒a=b=−11−(1)

\fbox{Again,}Again,

{2}^{3} + a. {2}^{2} - b.2 + 10 = 023+a.22−b.2+10=0

⇒2a - b = - 9 - (2)⇒2a−b=−9−(2)

⇒(2) - (1)→a = 2⇒(2)−(1)→a=2

∴b = 13∴b=13

Hence,

:a = 2 ,b = 13:a=2,b=13

:(

Similar questions