Math, asked by thakuruditbangar, 1 year ago

give ma a answer for a question​

Attachments:

Answers

Answered by IamIronMan0
1

Answer:

Note that

 {x}^{2}   +  {y}^{2} \\   = 23 + 4 \sqrt{33}  + 23 - 4 \sqrt{33}  \\  = 46 \\  \\  {x}^{2} -  {y}^{2}   \\  = 8 \sqrt{33} \\  \\    \\ xy  \\ =   \sqrt{{23}^{2}  - (4 \sqrt{33} ) {}^{2} } \\  =  \sqrt{529 - 528}  \\  = 1

Now just use equalities and put values .

 \frac{ {x}^{3}{  - {y}^{3} } }{x + y}  \\  \\  =  \frac{(x - y)( {x}^{2} +  {y}^{2}   + xy)}{x + y}  \\  \\  =  \frac{(x - y)(46  + 1)}{x + y}  \times  \frac{x  -  y}{x - y}  \:  \:  \:  \{ \: rationalization \\  \\  =  \frac{47(x - y) {}^{2} }{ {x}^{2} -  {y}^{2}  }  \\  \\  =  \frac{47(  {x}^{2}  +  {y}^{2}   - 2xy) }{8  \sqrt{33} }  \\  \\  =  \frac{47(46 - 2)}{8 \sqrt{33} }  \times   \frac{ \sqrt{33} }{ \sqrt{33} }  \\  \\  =  \frac{47 \times44 \times  \sqrt{33}  }{8 \times  33 }  \\  \\  =  \frac{47 \sqrt{33} }{6}

Similar questions