give me a answer of (i) and (iii)
Attachments:
Answers
Answered by
1
(iii)We know that angle subtended by a triangle in a semicircle is 90°.
Hence, ∠BAD=90°.
InΔABD,
∠BAD+∠ADB+∠DBA=180
90+60+∠ADB=180
∠ADB=180-150
∠ADB=30°.
(i) O is the centre of the circle.
∠OCQ=90° [∵PQ is a tangent]
∴∠OCD+∠DCQ=90
∠OCD+40=90
∠OCD=50°=∠ODC [∵ΔODC is isosceles as radius is same]
2∠OCD+∠DOC=180
∠DOC=80°
∠DOC+∠BOC=180 [Linear pair]
∠BOC=100°
ΔBOC is isosceles,
∴2∠DBC+∠BOC=180
2∠DBC=80
∠DBC=40°
Hope this will help
Hence, ∠BAD=90°.
InΔABD,
∠BAD+∠ADB+∠DBA=180
90+60+∠ADB=180
∠ADB=180-150
∠ADB=30°.
(i) O is the centre of the circle.
∠OCQ=90° [∵PQ is a tangent]
∴∠OCD+∠DCQ=90
∠OCD+40=90
∠OCD=50°=∠ODC [∵ΔODC is isosceles as radius is same]
2∠OCD+∠DOC=180
∠DOC=80°
∠DOC+∠BOC=180 [Linear pair]
∠BOC=100°
ΔBOC is isosceles,
∴2∠DBC+∠BOC=180
2∠DBC=80
∠DBC=40°
Hope this will help
sarvesh39:
thanks...a lot..man...!!
Similar questions