Math, asked by asherepriloron, 1 year ago

Give me a list of all the formulas of trigonometry

Answers

Answered by FlameFires
3
There's a lot but here are the basic ones. (sinx) ^2+(cosx)^2=1 1+(tanx)^2=(secx)^2 1+(cotx)^2=(cosecx)^2 Sin(90-x)=cosx and vice versa sec(90-x)=cosecx and vice versa tan(90-x)=cotx sin(a+b)=sina*cosb+cosa*sinb sin(a-b)=sina*cosb-cosa*sinb cos(a+b) =cosa*cosb-sina*sinb cos(a-b) =cosa*cosb+sina*sinb tan(a+b) =(tana+tanb) /1-tana*tanb cosecx=1/sinx secx=1/cosx cotx=1/tanx
Answered by Brenquoler
53

 { \red{ \bf{   Information \: related \: to \:Trigonometry:}}}

 { \green{ \bf{ sin θ = Perpendicular/Hypotenuse  }}}

 { \green{ \bf{  cos θ = Base/Hypotenuse }}}

 { \green{ \bf{tan θ = Perpendicular/Base  }}}

 { \green{ \bf{sec θ = Hypotenuse/Base   }}}

 { \green{ \bf{  cosec θ = Hypotenuse/Perpendicular }}}

 { \green{ \bf{  cot θ = Base/Perpendicular }}}

 { \red{ \bf{Their \: reciprocal \: Identities:   }}}

 { \green{ \bf{  cosec θ = 1/sin θ }}}

 { \green{ \bf{ sec θ = 1/cos θ  }}}

 { \green{ \bf{  cot θ = 1/tan θ }}}

 { \green{ \bf{sin θ = 1/cosec θ   }}}

 { \green{ \bf{ cos θ = 1/sec θ  }}}

 { \green{ \bf{   tan θ = 1/cot θ}}}

 { \red{ \bf{ Their \: co-function \: Identities:  }}}

 { \green{ \bf{  sin (90°−x) = cos x }}}

 { \green{ \bf{cos (90°−x) = sin x   }}}

 { \green{ \bf{ tan (90°−x) = cot x  }}}

 { \green{ \bf{  cot (90°−x) = tan x }}}

 { \green{ \bf{ sec (90°−x) = cosec x  }}}

 { \green{ \bf{ cosec (90°−x) = sec x  }}}

 { \red{ \bf{ Their \: fundamental \: trigonometric \: identities:  }}}

 { \green{ \bf{  sin²θ + cos²θ = 1 }}}

 { \green{ \bf{  sec²θ - tan²θ = 1 }}}

 { \green{ \bf{ cosec²θ - cot²θ = 1  }}}

Similar questions