Math, asked by hharikrishna777, 3 days ago

Give me a proper solution ​

Attachments:

Answers

Answered by XxitzZBrainlyStarxX
6

Question:-

Prove that:

 \sf \large  \frac{1 + sin \theta}{cos \theta}  +  \frac{cos \theta}{1 + sin \theta}  = 2sec \theta.

Given:-

 \sf \large Identity  \:  \:  \sf \large  \frac{1 + sin \theta}{cos \theta}  +  \frac{cos \theta}{1 + sin \theta}  = 2sec \theta.

To Prove:-

  \sf \large  \frac{1 + sin \theta}{cos \theta}  +  \frac{cos \theta}{1 + sin \theta}  = 2sec \theta.

Solution:-

L.H.S.

LCM of (cosθ) and (1 + sinθ) is cosθ (1 + sinθ).

 \sf \large =  \frac{(1 + sin \theta) {}^{2}  + cos {}^{2}  \theta}{(cos \theta)(1 + sin \theta)} .

 \sf \large =  \frac{1 + sin {}^{2}  \theta + 2sin \theta + cos {}^{2} \theta }{cos \theta( 1 + sin \theta)} .

 \sf \large =  \frac{1 + 1 + 2sin \theta}{cos \theta( 1 + si n \theta)}   \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \:  \:  \:  \:  \:  \sf \large ( \because sin {}^{2}  \theta + cos {}^{2}  \theta = 1).

 \sf \large =  \frac{2(1 + sin \theta)}{cos \theta(1 + sin \theta)}  = 2sec \theta \:  \:  \:  \: R.H.S.

Answer:-

{ \boxed{ \sf \large  \red{ \sf \large  \frac{1 + sin \theta}{cos \theta}  +  \frac{cos \theta}{1 + sin \theta}  = 2sec \theta.}}}

Hence, Proved

L.H.S. = R.H.S.

Hope you have satisfied.

Answered by chandrimabanerjee777
1

Step-by-step explanation:

see the explanation hope this will help you then please mark me as brainliest.

Attachments:
Similar questions